Review of the Synthesis, Characterization, and Testing of Graft Copolymers of Lignin

  • John J. Meister

Abstract

Lignin [8068-00-6] is a natural product produced by all woody plants. It is second only to cellulose in mass of polymer formed per annum.1 Lignin constitutes between 15 and 40 percent of the dry weight of wood with variation in lignin content being caused by growing conditions, species type, the parts of the plant tested, and numerous other factors2. Plants use lignin to 1. control fluid flow, 2. add strength, and 3. protect against attack by microorganisms3.Each cell of the plant grows its own lignin. The cell undergoes “lignification” in response to an internally-orchestrated series of reactions which take place all during cell differentiation3. Lignin appears first in the primary (exterior) wall of the cell “corners”. As the cell grows, lignin deposits throughout the primary wall and then appears in the secondary, interior wall of the cell. During this growth period, lignin deposits develop in the intercellular region, also. Lignin appears to be attached to the crystalline microfibrils of cellulose by phenylpropane linkages to carboxyl groups. Such a bond structure would be a uronic acid ester linkage.3

Keywords

Benzene Ozone Polysaccharide Milling Drilling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Henry I. Bolker, “Natural and Synthetic Polymers, An Introduction,” p. 580, Marcel Dekker, New Yorrk, (1974), ISBN 0-8247-1060-6.Google Scholar
  2. 2.
    Eero Sjostrom, “Wood Chemistry, Fundamentals and Applications,” p.69, Academic Press, (1981), ISBN 0-12-647480-X.Google Scholar
  3. 3.
    K. V. Sarkanen, C.H. Ludwig, “Lignins; Occurrence, Formation, Structure, and Reactions”, p. 1, J. Wiley, (1971), ISBN 0-471-75422-6.Google Scholar
  4. 4.
    T. Kent Kirk, T. Higuchi, H. Chang, Lignin Biodégradation: Microbiology, Chemistry, and Potential Applications, Vol. 1, p. 5, CRC Press, (1980), ISBN 0-8493-5459-5.Google Scholar
  5. 5.
    A Bjorkman, Svensk Papperstidn., 59, 477 (1956).Google Scholar
  6. 6.
    J. C. Pew, Tappi, 40, 553 (1957).Google Scholar
  7. 7.
    F. F. Nord, W. J. Schubert, Holz Forschung, 5, 1, (1951).Google Scholar
  8. 8.
    F. F. Nord, W. J. Schubert, Tappi, 40, 285, (1957).Google Scholar
  9. 9.
    G. de Stevens, F. F. Nord, Fortschr. Chem. Forsch., 3, 70 (1954).CrossRefGoogle Scholar
  10. 10.
    10.G. de Stevens, F. F. Nord, J. Am. Chem. Soc., 73, 4622, (1951).CrossRefGoogle Scholar
  11. 11.
    S. F. Kudzin, F. F. Nord, J. Am. Chem. Soc., 73, 690, 4619, (1951).CrossRefGoogle Scholar
  12. 12.
    F. F. Nord, G. de Stevens, Naturwissenschaften, 39, 479, (1952).CrossRefGoogle Scholar
  13. 13.
    J. C. Pew, J. Am. Chem. Soc., 74, 2850, (1952).CrossRefGoogle Scholar
  14. 14.
    E. Hagglund, Cellulosechemic, 4, 84, (1923).Google Scholar
  15. 15.
    A Sakakibara, N. Nakayama, J. Japan. Wood Res. Soc. 8, 153, (1962).Google Scholar
  16. 16.
    David N. S. Hon, Ed., Graft Copolymerization of Lignocellulosic Fibers, Acs. Symposium Series #187, Am. Chem. Soc., (1982) ISSN 0097-1656; 187.Google Scholar
  17. 17.
    Chem. and Eng. News, 62 (#39), 19–20, (1984).Google Scholar
  18. 18.
    T. Koshijima, E. Muraki, J. Japan. Wood Res. Soc., 10, 110, 116, (1964).Google Scholar
  19. 19.
    Robert W. Lenz, “Organic Chemistry of Synthetic High Polymers”, pp. 161–172, 718, Interscience, (1967), ISBN 470-52630-0.Google Scholar
  20. 20.
    J. Zoldners, A. Cinite J. Surna, R. Rasina, Khim. Drev. 9, 39–52, (1971), CA 76: 87363m and CA76: 87364n.Google Scholar
  21. 21.
    J. Zoldners, J. Surna, I. Vandana, Khim. Drev., (#12), 125–9, (1972), CA79: 20471 p.Google Scholar
  22. 22.
    J. Zoldners, J. Surna, M. Indane, Khim. Drev. 15, 153–8, 1971, CA81: 171573r.Google Scholar
  23. 23.
    J. Zoldners, J. Surna, L. Deme, Khim. Drev. (#4), 11–21, (1975).Google Scholar
  24. 24.
    J. Zoldners, Kh.D. Krivisha, J. Surna, J. Tirzina, Khim. Drev., (#5), 109–115, (1975), CA84:6714s.Google Scholar
  25. 25.
    J. Zoldners, J. Surna, J. Tirzina, Khim. Drev., (#5), 116–21, (1975), CA83:195480a.Google Scholar
  26. 26.
    T. N. Kleinert, Tappi, 50, 120, (1967).Google Scholar
  27. 27.
    A. Kobayashi, R. B. Phillips, W. Brown, V. T. Stannett, Tappi, 54 (#2), 215–221, (1971).Google Scholar
  28. 28.
    Tetsuo Koshijima, E. Muraki, J. Poly. Sci., Part A1, 6, (#6), 1431–1440, (1968).CrossRefGoogle Scholar
  29. 29.
    T. Koshijima, Nihon Mokuzai Gakkai, 12 (#3), 144–150, (1966).Google Scholar
  30. 30.
    Tetsuo Koshijima, Einosuke Muraki, Nihon Mokuzai Gakkai, 12, (#3), 139–144, (1966).Google Scholar
  31. 31.
    T. Koshijima, E. Muraki, Zairy O., 16, #169, 834–838, (1967).Google Scholar
  32. 32.
    R. B. Phillips, W. Brown, V. T. Stannett, Jo. Appl. Poly. Sci., 15, 2929–2940, (1971).CrossRefGoogle Scholar
  33. 33.
    M. P. Godsay, G. A. Harpell, K. E. Russell, J. Poly. Sci., 57, 641, (1962).CrossRefGoogle Scholar
  34. 34.
    R. B. Phillips, W. Brown, V. T. Stannett, J. Appl. Poly. Sci., 16, 1–14, (1972).CrossRefGoogle Scholar
  35. 35.
    R. B. Phillips, W. Brown, V. Stannett, J. Appl. Poly. Sci., 17, 443–451, (1973).CrossRefGoogle Scholar
  36. 36.
    J. Marton, T. Marton, Tappi, 47, 471 (1964).Google Scholar
  37. 37.
    S. Katuscak, M. Mahdalik, A, Hrivik, V. Minarik, J. Appl. Poly. Sci., 17, (#6), 1919–1928, (1973).CrossRefGoogle Scholar
  38. 38.
    J. Zoldners, J. Surna, J. Tirzina, Khim. Drev. (#5), 116–21, (1975) CA83:195480a.Google Scholar
  39. 39.
    J. Zoldners, J. Tirzina, J. Surna, Khim Drev. (#6), 98–102, (1975), CA84:6153j.Google Scholar
  40. 40.
    Adolphe Chapiro, “Radiation Chemistry of Polymeric Systems,” pp. 173, 183, 196, Interscience, New York, (1962).Google Scholar
  41. 41.
    M. S. Matheson, E. E. Auer, E. B. Bevilacqua, E. J. Hart, J. Amer. Chem. Soc., 73, 835, (1951).Google Scholar
  42. 42.
    Sharda Dasgupta, Canadian Spectros. 12 (#1), 16–19, 25, (1967).Google Scholar
  43. 43.
    A. A. Berlin, S. B. Chernyavaskaya, Khim. Drev, (#1), 70–73 (1977), CA86:191505b.Google Scholar
  44. 44.
    A. A. Berlin, S. B. Chemyavskaya, Kolloidn. Zh. 42, (#4), 731–735, (1980) CA93:134053y.Google Scholar
  45. 45.
    Tetsuo Koshijima, Einosuke Muraki, Nihon Mokuzai Gakkaishi, 10 (#3), 110–115, (1964).Google Scholar
  46. 46.
    Tetsuo Koshijima, Einosuke Muraki, Nihon Mokuzai Gakkaishi, 10, (#3), 116–119, (1964).Google Scholar
  47. 47.
    Cr. Simionescu, A. Cernatescu-Asandei, A. Stoleru, Cellulose. Chem. Tech., 9, #4, 363–380, (1975).Google Scholar
  48. 48.
    Hitoshi Kubota, Yoshitaka Ogiwara, J. Appl. Poly. Sci., 13, 1569–1575, (1969).CrossRefGoogle Scholar
  49. 49.
    Henry P. Naveau, Cellulose. Chem. Tech., 9, 71–77, (1975).Google Scholar
  50. 50.
    A. Kobayashi, R. B. Phillips, W. Brown, V. T. Stannett, Tappi, 54, (#2), 215–221, (1971).Google Scholar
  51. 51.
    J. J. Meister, D. R. Patil, L. R. Field, J. C. Nicholson, J. Poly. Sci., Poly. Chem. Ed., 22, 1963–1980, (1984).CrossRefGoogle Scholar
  52. 52.
    J. J. Meister, D. R. Patil, “Solvent Effects and initiation mechanisms for Graft Polymerization on Pine Lignin”, Accepted by Macromolecules, 2/1/85. Publication expected 8/85.Google Scholar
  53. 53.
    J. J. Meister, D. R. Patil, H. Channell, J. Appl. Poly. Sci., 29, 3457–3477, (1984).CrossRefGoogle Scholar
  54. 54.
    John J. Mesiter, Damodar R. Patil, Harvey Channell, “Synthesis of Graft Copolymers from Lignin and 2-propenamide and Applications of the products to Drilling Muds,” Accepted by Industrial and Engineering Chemistry, Prod. Res. Dev Publication expected 8/85.Google Scholar
  55. 55.
    J. C. Nicholson, J. J. Mesiter, D. R. Patil, L. R. Field, Anal. Chem., 56, 2447–2451, (1984).CrossRefGoogle Scholar
  56. 56.
    John J. Meister, Damadar R. Patil, Larry R. Field, John C Nicholson, “Methods for Measurement of Molecular Composition as a Function of Molecular Size For Random, Block, and Graft Copolymers”, In preparation.Google Scholar
  57. 57.
    George Odian, Principles of Polymerization, 2nd Ed., p. 230-231, Wiley, New York, (1981). ISBN 0-471-05146-2.Google Scholar
  58. 58.
    Leo C. F. Wu, Wolfgang G. Glasser, J. Appl. Poly. Sci., 29, 1111–1123, (1984).CrossRefGoogle Scholar
  59. 59.
    Oscar H. H. Hsu, Wolfgang Glasser, Wood Science, 9 (#2), 97–103, (1976).Google Scholar
  60. 60.
    W. G. Glasser, V. P. Sara, W. H. Newman, J. Adhesion, 14 (#3/4), 233–255, (1982).CrossRefGoogle Scholar
  61. 61.
    Joseph Haggen, Chem. Eng. News, 63 (#18), p. 33–34, (May 6, 1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John J. Meister
    • 1
  1. 1.Department of ChemistrySouthern Methodist UniversityDallasUSA

Personalised recommendations