Skip to main content

Review of the Synthesis, Characterization, and Testing of Graft Copolymers of Lignin

  • Chapter
Renewable-Resource Materials

Abstract

Lignin [8068-00-6] is a natural product produced by all woody plants. It is second only to cellulose in mass of polymer formed per annum.1 Lignin constitutes between 15 and 40 percent of the dry weight of wood with variation in lignin content being caused by growing conditions, species type, the parts of the plant tested, and numerous other factors2. Plants use lignin to 1. control fluid flow, 2. add strength, and 3. protect against attack by microorganisms3.Each cell of the plant grows its own lignin. The cell undergoes “lignification” in response to an internally-orchestrated series of reactions which take place all during cell differentiation3. Lignin appears first in the primary (exterior) wall of the cell “corners”. As the cell grows, lignin deposits throughout the primary wall and then appears in the secondary, interior wall of the cell. During this growth period, lignin deposits develop in the intercellular region, also. Lignin appears to be attached to the crystalline microfibrils of cellulose by phenylpropane linkages to carboxyl groups. Such a bond structure would be a uronic acid ester linkage.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henry I. Bolker, “Natural and Synthetic Polymers, An Introduction,” p. 580, Marcel Dekker, New Yorrk, (1974), ISBN 0-8247-1060-6.

    Google Scholar 

  2. Eero Sjostrom, “Wood Chemistry, Fundamentals and Applications,” p.69, Academic Press, (1981), ISBN 0-12-647480-X.

    Google Scholar 

  3. K. V. Sarkanen, C.H. Ludwig, “Lignins; Occurrence, Formation, Structure, and Reactions”, p. 1, J. Wiley, (1971), ISBN 0-471-75422-6.

    Google Scholar 

  4. T. Kent Kirk, T. Higuchi, H. Chang, Lignin Biodégradation: Microbiology, Chemistry, and Potential Applications, Vol. 1, p. 5, CRC Press, (1980), ISBN 0-8493-5459-5.

    Google Scholar 

  5. A Bjorkman, Svensk Papperstidn., 59, 477 (1956).

    CAS  Google Scholar 

  6. J. C. Pew, Tappi, 40, 553 (1957).

    CAS  Google Scholar 

  7. F. F. Nord, W. J. Schubert, Holz Forschung, 5, 1, (1951).

    CAS  Google Scholar 

  8. F. F. Nord, W. J. Schubert, Tappi, 40, 285, (1957).

    CAS  Google Scholar 

  9. G. de Stevens, F. F. Nord, Fortschr. Chem. Forsch., 3, 70 (1954).

    Article  Google Scholar 

  10. 10.G. de Stevens, F. F. Nord, J. Am. Chem. Soc., 73, 4622, (1951).

    Article  Google Scholar 

  11. S. F. Kudzin, F. F. Nord, J. Am. Chem. Soc., 73, 690, 4619, (1951).

    Article  CAS  Google Scholar 

  12. F. F. Nord, G. de Stevens, Naturwissenschaften, 39, 479, (1952).

    Article  CAS  Google Scholar 

  13. J. C. Pew, J. Am. Chem. Soc., 74, 2850, (1952).

    Article  CAS  Google Scholar 

  14. E. Hagglund, Cellulosechemic, 4, 84, (1923).

    CAS  Google Scholar 

  15. A Sakakibara, N. Nakayama, J. Japan. Wood Res. Soc. 8, 153, (1962).

    CAS  Google Scholar 

  16. David N. S. Hon, Ed., Graft Copolymerization of Lignocellulosic Fibers, Acs. Symposium Series #187, Am. Chem. Soc., (1982) ISSN 0097-1656; 187.

    Google Scholar 

  17. Chem. and Eng. News, 62 (#39), 19–20, (1984).

    Google Scholar 

  18. T. Koshijima, E. Muraki, J. Japan. Wood Res. Soc., 10, 110, 116, (1964).

    CAS  Google Scholar 

  19. Robert W. Lenz, “Organic Chemistry of Synthetic High Polymers”, pp. 161–172, 718, Interscience, (1967), ISBN 470-52630-0.

    Google Scholar 

  20. J. Zoldners, A. Cinite J. Surna, R. Rasina, Khim. Drev. 9, 39–52, (1971), CA 76: 87363m and CA76: 87364n.

    Google Scholar 

  21. J. Zoldners, J. Surna, I. Vandana, Khim. Drev., (#12), 125–9, (1972), CA79: 20471 p.

    Google Scholar 

  22. J. Zoldners, J. Surna, M. Indane, Khim. Drev. 15, 153–8, 1971, CA81: 171573r.

    Google Scholar 

  23. J. Zoldners, J. Surna, L. Deme, Khim. Drev. (#4), 11–21, (1975).

    Google Scholar 

  24. J. Zoldners, Kh.D. Krivisha, J. Surna, J. Tirzina, Khim. Drev., (#5), 109–115, (1975), CA84:6714s.

    Google Scholar 

  25. J. Zoldners, J. Surna, J. Tirzina, Khim. Drev., (#5), 116–21, (1975), CA83:195480a.

    Google Scholar 

  26. T. N. Kleinert, Tappi, 50, 120, (1967).

    CAS  Google Scholar 

  27. A. Kobayashi, R. B. Phillips, W. Brown, V. T. Stannett, Tappi, 54 (#2), 215–221, (1971).

    CAS  Google Scholar 

  28. Tetsuo Koshijima, E. Muraki, J. Poly. Sci., Part A1, 6, (#6), 1431–1440, (1968).

    Article  CAS  Google Scholar 

  29. T. Koshijima, Nihon Mokuzai Gakkai, 12 (#3), 144–150, (1966).

    CAS  Google Scholar 

  30. Tetsuo Koshijima, Einosuke Muraki, Nihon Mokuzai Gakkai, 12, (#3), 139–144, (1966).

    Google Scholar 

  31. T. Koshijima, E. Muraki, Zairy O., 16, #169, 834–838, (1967).

    Google Scholar 

  32. R. B. Phillips, W. Brown, V. T. Stannett, Jo. Appl. Poly. Sci., 15, 2929–2940, (1971).

    Article  CAS  Google Scholar 

  33. M. P. Godsay, G. A. Harpell, K. E. Russell, J. Poly. Sci., 57, 641, (1962).

    Article  CAS  Google Scholar 

  34. R. B. Phillips, W. Brown, V. T. Stannett, J. Appl. Poly. Sci., 16, 1–14, (1972).

    Article  CAS  Google Scholar 

  35. R. B. Phillips, W. Brown, V. Stannett, J. Appl. Poly. Sci., 17, 443–451, (1973).

    Article  Google Scholar 

  36. J. Marton, T. Marton, Tappi, 47, 471 (1964).

    Google Scholar 

  37. S. Katuscak, M. Mahdalik, A, Hrivik, V. Minarik, J. Appl. Poly. Sci., 17, (#6), 1919–1928, (1973).

    Article  CAS  Google Scholar 

  38. J. Zoldners, J. Surna, J. Tirzina, Khim. Drev. (#5), 116–21, (1975) CA83:195480a.

    Google Scholar 

  39. J. Zoldners, J. Tirzina, J. Surna, Khim Drev. (#6), 98–102, (1975), CA84:6153j.

    Google Scholar 

  40. Adolphe Chapiro, “Radiation Chemistry of Polymeric Systems,” pp. 173, 183, 196, Interscience, New York, (1962).

    Google Scholar 

  41. M. S. Matheson, E. E. Auer, E. B. Bevilacqua, E. J. Hart, J. Amer. Chem. Soc., 73, 835, (1951).

    Google Scholar 

  42. Sharda Dasgupta, Canadian Spectros. 12 (#1), 16–19, 25, (1967).

    Google Scholar 

  43. A. A. Berlin, S. B. Chernyavaskaya, Khim. Drev, (#1), 70–73 (1977), CA86:191505b.

    Google Scholar 

  44. A. A. Berlin, S. B. Chemyavskaya, Kolloidn. Zh. 42, (#4), 731–735, (1980) CA93:134053y.

    Google Scholar 

  45. Tetsuo Koshijima, Einosuke Muraki, Nihon Mokuzai Gakkaishi, 10 (#3), 110–115, (1964).

    Google Scholar 

  46. Tetsuo Koshijima, Einosuke Muraki, Nihon Mokuzai Gakkaishi, 10, (#3), 116–119, (1964).

    Google Scholar 

  47. Cr. Simionescu, A. Cernatescu-Asandei, A. Stoleru, Cellulose. Chem. Tech., 9, #4, 363–380, (1975).

    CAS  Google Scholar 

  48. Hitoshi Kubota, Yoshitaka Ogiwara, J. Appl. Poly. Sci., 13, 1569–1575, (1969).

    Article  CAS  Google Scholar 

  49. Henry P. Naveau, Cellulose. Chem. Tech., 9, 71–77, (1975).

    CAS  Google Scholar 

  50. A. Kobayashi, R. B. Phillips, W. Brown, V. T. Stannett, Tappi, 54, (#2), 215–221, (1971).

    CAS  Google Scholar 

  51. J. J. Meister, D. R. Patil, L. R. Field, J. C. Nicholson, J. Poly. Sci., Poly. Chem. Ed., 22, 1963–1980, (1984).

    Article  CAS  Google Scholar 

  52. J. J. Meister, D. R. Patil, “Solvent Effects and initiation mechanisms for Graft Polymerization on Pine Lignin”, Accepted by Macromolecules, 2/1/85. Publication expected 8/85.

    Google Scholar 

  53. J. J. Meister, D. R. Patil, H. Channell, J. Appl. Poly. Sci., 29, 3457–3477, (1984).

    Article  CAS  Google Scholar 

  54. John J. Mesiter, Damodar R. Patil, Harvey Channell, “Synthesis of Graft Copolymers from Lignin and 2-propenamide and Applications of the products to Drilling Muds,” Accepted by Industrial and Engineering Chemistry, Prod. Res. Dev Publication expected 8/85.

    Google Scholar 

  55. J. C. Nicholson, J. J. Mesiter, D. R. Patil, L. R. Field, Anal. Chem., 56, 2447–2451, (1984).

    Article  CAS  Google Scholar 

  56. John J. Meister, Damadar R. Patil, Larry R. Field, John C Nicholson, “Methods for Measurement of Molecular Composition as a Function of Molecular Size For Random, Block, and Graft Copolymers”, In preparation.

    Google Scholar 

  57. George Odian, Principles of Polymerization, 2nd Ed., p. 230-231, Wiley, New York, (1981). ISBN 0-471-05146-2.

    Google Scholar 

  58. Leo C. F. Wu, Wolfgang G. Glasser, J. Appl. Poly. Sci., 29, 1111–1123, (1984).

    Article  Google Scholar 

  59. Oscar H. H. Hsu, Wolfgang Glasser, Wood Science, 9 (#2), 97–103, (1976).

    Google Scholar 

  60. W. G. Glasser, V. P. Sara, W. H. Newman, J. Adhesion, 14 (#3/4), 233–255, (1982).

    Article  CAS  Google Scholar 

  61. Joseph Haggen, Chem. Eng. News, 63 (#18), p. 33–34, (May 6, 1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Meister, J.J. (1986). Review of the Synthesis, Characterization, and Testing of Graft Copolymers of Lignin. In: Carraher, C.E., Sperling, L.H. (eds) Renewable-Resource Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2205-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2205-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9295-1

  • Online ISBN: 978-1-4613-2205-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics