Inhibitory Ca2+-Regulation of the Physarum Actomyosin System

  • Kazuhiro Kohama
  • Setsuro Ebashi
Part of the NATO ASI Series book series (NSSA, volume 106)


Ca2+ is now accepted as the most fundamental regulator of intracellular processes in general. This crucial role was first recognized in the research on muscle contraction. The first event that could somehow be related to the present Ca2+ concept was the famous finding of Ringer concerning the indispensable nature of Ca2+ for cardiac contractility (Ringer, 1983). Biological sciences at that time, however, had not yet reached a level to evaluate this important finding properly; they interpreted Ca2+ as a mere factor to maintain the physiological state of cells in competition with K+.


Light Chain ATPase Activity Cytoplasmic Streaming Physarum Polycephalum Actomyosin System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. P., 1964, Regional differences in ion concentration in migrating Plasmodia, in: “Primitive Motile System in Cell Biology,” R. E. Allen and N. Kamiya, eds., p. 128, Academic Press, New York.Google Scholar
  2. Chambers, R., and Hale, H. P., 1932, The formation of ice in protoplasm, Proc. Roy. Soc., 110 B:336.Google Scholar
  3. Cheung, W. Y., 1970, Cyclic 3′, 5′ nucleotide phosphodiesterases demonstration of an activator, Biochem. Biophys. Res. Commun ., 38: 533.PubMedCrossRefGoogle Scholar
  4. Cleveland, D. W., Fischer, S. G., Kirschner, M. W., and Laemmli, U. K., 1977, Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis, J. Biol. Chem ., 252: 1102.PubMedGoogle Scholar
  5. Ebashi, S., 1963, Third component participating in the superprecipitation of ‘natural actomyosin’, Nature, 200: 1010.PubMedCrossRefGoogle Scholar
  6. Ebashi, S., and Endo, M., 1968, Calcium ion and muscle contraction, Progr. Biophys. Mol. Biol ., 18: 123.CrossRefGoogle Scholar
  7. Ebashi, S., and Kodama, A., 1965, A new protein factor promoting aggregation of tropomyosin, J. Biochem ., 58: 107.PubMedGoogle Scholar
  8. Ebashi, S., Nonomura, Y., Toyo-oka, T., and Katayama, E., 1976, Regulation of muscle contraction by the calcium-troponin- tropomyosin system, in: “Calcium in Biological Systems,” C. J. Duncan, ed., p. 349, Cambridge University Press, London.Google Scholar
  9. Ebisawa, K., and Nonomura, Y., 1985, Enhancement of actin-activated myosin ATPase by an 84K Mr actin-binding protein in vertebrate smooth muscle, J. Biochem ., 98:1127,PubMedGoogle Scholar
  10. Hartshorne, D. J., and Siemankowski, R. F., 1981, Regulation of smooth muscle actomyosin, Ann. Rev. Physiol ., 43: 519.CrossRefGoogle Scholar
  11. Hatano, S., 1970, Specific effect of Ca2+ on movement of plasmodial fragment obtained by caffeine treatment, Exp. Cell Res ., 61: 199.PubMedCrossRefGoogle Scholar
  12. Hatano, S., and Tazawa, M., 1968, Some properties of a contractile protein in a myxomycete Plasmodium, Biochim. Biophys. Acta, 154: 507.PubMedGoogle Scholar
  13. Hayama, T., Shimmen, T., and Tazawa, M., 1979, Participation of Ca2+ in cessation of cytoplasmic streaming induced by membrane excitation in Characeae internodal cells, Protoplasma, 99: 305.CrossRefGoogle Scholar
  14. Hayama, T., and Tazawa, M., 1980, Ca2+ reversibly inhibits active rotation of chloroplasts in isolated cytoplasmic droplets in Chara, Protoplasma, 102: 1.CrossRefGoogle Scholar
  15. Heilbrunn, L. V., 1940, The action of calcium on muscle protoplasm, Physiol. Zool ., 13: 88.Google Scholar
  16. Heilbrunn, L. V., and Wiercinski, F. J., 1947, The action of various cations on muscle protoplasm, J. Cell. Comp. Physiol ., 29: 15.CrossRefGoogle Scholar
  17. Kakiuchi, S., Yamazaki, R., and Nakajima, H., 1969, Studies on brain phosphodiesterase (2), Bull. Japan. Neurochem. Soc ., 8: 17.Google Scholar
  18. Kakiuchi, S., Yamazaki, R., and Nakajima, H., 1970, Properties of a heatstable phosphodiesterase activating factor isolated from brain extract, Proc. Jpn Acad ., 46B: 587.Google Scholar
  19. Kamada, T., and Kinosita, H., 1943, Disturbances initiated from naked surface of muscle protoplasm, Japan. J. Zool ., 10: 469.Google Scholar
  20. Kato, T., and Tonomura, Y., 1975, Ca2+-sensitivity of actomyosin ATPase purified from Physarum polycephalum, J. Biochem ., 77: 1127.PubMedGoogle Scholar
  21. Kawamura, M., and Nagano, K., 1975, Calcium ion-dependent ATP pyrophosphohydrolase in Physarum polycephalum, Biochim. Biophys. Acta, 397: 207.PubMedGoogle Scholar
  22. Keil, E. M., and Sichel, F. J. M., 1936, The injection of aqueous solution, including acetylcholine, into the isolated muscle fiber, Biol. Bull ., 71: 402.Google Scholar
  23. Kendrick-Jones, J., Lehman, W., and Szent-Györgyi, A. G., 1970, Regulation in molluscan muscles, J. Mol. Biol ., 54: 313.PubMedCrossRefGoogle Scholar
  24. Kessler, D., Eisenlohr, L. C., Lathwell, M. J., Huang, J., Taylor, H. C., Godfrey, S. D., and Spady, M. L., 1980, Physarum myosin light chain binds calcium, Cell Motil ., 1: 63.PubMedCrossRefGoogle Scholar
  25. Kohama, K., 1981, Ca-dependent inhibitory factor for the myosin- act in-ATP interaction of Physarum polycephalum, J. Biochem ., 90: 1829.PubMedGoogle Scholar
  26. Kohama, K., Craig, R., Kohama, T., and Kendrick-Jones, J., 1983, Characterization of Ca2+-sensitive Physarum myosin, Europ. J. Cell Biol., suppl ., 1: 25.Google Scholar
  27. Kohama, K., and Kendrick-Jones, J,, 1982, Negative Ca2+-sensitivity of actin-activated Mg-ATPase activity of myosin from Physarum polycephalum, J. Muscle Res, Cell Motil ., 3: 491.Google Scholar
  28. Kohama, K., Kobayashi, K., and Mitani, S., 1980, Effects of Ca ion and ADP on superprecipitation of myosin B from slime mold, Physarum polycephalum, Proc. Jpn. Acad ., 56B: 591.CrossRefGoogle Scholar
  29. Kohama, K., and Kohama, T., 1984, Myosin confers inhibitory Ca2+-sensitivity on actin-myosin-ATP interaction of Physarum polycephalum under physiological conditions, Proc. Jpn. Acad ., 60B: 435.CrossRefGoogle Scholar
  30. Kohama, K., and Shimmen, T., 1985, Inhibitory Ca2+-control of movement of beads coated with Physarum myosin along actin-cables in Chara internodal cells, Protoplasma, 129: 88.CrossRefGoogle Scholar
  31. Kohama, K., and Takano-Ohmuro, H., 1984, Stage specific myosins from amoeba and Plasmodium of slime mold, Physarum polycephalum, Proc. Jpn. Acad ., 60B: 431.CrossRefGoogle Scholar
  32. Kohama, K., and Takano-Ohmuro, H., 1985, Stage specific myosins from amoeba and Plasmodium of Physarum polycephalum, Develop. Growth Diff ., 27: 510.Google Scholar
  33. Kohama, K., Tanokura, S., and Yamada, K., 1984, 31p nuclear magnetic resonance studies of intact plasmodia of Physarum polycephalum, FEBS Lett ., 76: 161.CrossRefGoogle Scholar
  34. Marston, S. B., 1982, The regulation of smooth muscle contractile proteins, Prog. Biophys. Mol. Biol ., 41: 1.CrossRefGoogle Scholar
  35. Maruyama, K., Mikawa, T., and Ebashi, S., 1983, Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis, J. Biochem ., 95: 511.Google Scholar
  36. Nachmias, V. T., and Asch, A., 1974, Actin mediated calcium dependency of actomyosin in a myxomycete, Biochem. Biophys. Res. Comm ., 60: 654.CrossRefGoogle Scholar
  37. Ogihara, S., Ikebe, M., Takahashi, K., and Tonomura, Y., 1983, Requirement phosphorylation of Physarum myosin heavy chain for thick filament formation, actin activation of Mg2+-ATPase activity, and Ca2+-inhibition, J. Biochem ., 93: 205.PubMedGoogle Scholar
  38. Ozawa, E., Hosoi, K., and Ebashi, S., 1967, Reversible stimulation of muscle phosphorylase b kinase by low concentration of calcium ions, J. Biochem ., 61: 531.PubMedGoogle Scholar
  39. Ridgway, E. B., and Durham, A. C. H., 1976, Oscillations of calcium ion concentrations in Physarum polycephalum, J. Cell Biol ., 69: 223.PubMedCrossRefGoogle Scholar
  40. Ringer, S., 1883, A further contribution regarding the influence of the blood on the contraction of the heart, J. Physiol ., 4: 29.PubMedGoogle Scholar
  41. Sheetz, J. P., and Spudich, J. A., 1983, Movement of myosin-coated fluorescent beads on actin cables in vitro, Nature, 303: 31.PubMedCrossRefGoogle Scholar
  42. Shimmen, T., Tominaga, Y., and Tazawa, M., 1984, Involvement of Ca2+ and flowing endoplasm in recovery of cytoplasmic streaming after K+-induced cessation, Protoplasma, 121: 178.CrossRefGoogle Scholar
  43. Shimmen, T., and Yano, Y., 1985, Ca2+ regulation of myosin sliding along Chara actin bundles mediated by native tropomyosin, Proc. Jpn. Acad ., 61B: 86.CrossRefGoogle Scholar
  44. Shimmen, T, and Yano, Y., 1984, Active sliding movement of latex beads coated with skeletal muscle myosin on Chara actin bundles, Protoplasma, 121: 132.CrossRefGoogle Scholar
  45. Sobue, K., Morimoto, K., Inui, M., Kanda, K., and Kakiuchi, S., 1982, Control of actin-myosin interaction of gizzard smooth muscle by calmodulin- and caldesmon-limited flip-flop mechanisms, Biomed. Res ., 3: 188.Google Scholar
  46. Sugino, H., and Matsumura, F., 1983, Fragmin induces tension reduction of actomyosin threads in the presence of micromolar levels of Ca2+, J. Cell Biol ., 96: 199.PubMedCrossRefGoogle Scholar
  47. Sutoh, K., Iwane, M., Matsuzaki, F., Kikuchi, M., and Ikai, A., 1984, Isolation and characterization of a high molecular weight actin-binding protein from Physarum polycephalum plasmodia, J. Cell Biol ., 98: 1611.PubMedCrossRefGoogle Scholar
  48. Tominaga, Y., Shimmen, T., and Tazawa, M., 1983, Control of cytoplasmic streaming by extracellular Ca2+ in permeabilized Nitella cell, Protoplasma, 116: 75.CrossRefGoogle Scholar
  49. Ueda, T., Gotz von Olenhusen, K., and Wohlfarth-Bottermann, K.-E., 1978, Reaction of the contractile apparatus in Physarum to injected calcium, ATP, ADP, and 5′-AMP, Cytobiologie, 18: 76.PubMedGoogle Scholar
  50. Uyeda, T. Q. P., and Furuya, M., 1985, Cytoskeletal changes visualized by fluorescence microscopy during amoeba-to- flagellate and flagellate-to-amoeba transformation in Physarum polycephalum, Protoplasma, 126: 221.CrossRefGoogle Scholar
  51. White, H. D., 1982, Special instrumentation and techniques for kinetic studies of contractile systems, Methods Enzymol ., 85B: 698.PubMedCrossRefGoogle Scholar
  52. Williamson, R. E., and Ashley, C. C., 1982, Free Ca2+ and cytoplasmic streaming in the alga Chara, Nature, 296: 647.PubMedCrossRefGoogle Scholar
  53. Yoshimoto, Y., and Kamiya, N., 1984, ATP and calcium-controlled contraction in a saponin model of Physarum polycephalum, Cell Struct. Funct ., 9: 135.PubMedCrossRefGoogle Scholar
  54. Yoshimoto, Y., Matsumura, F., and Kamiya, N., 1981, Simultaneous oscillations of Ca2+ efflux and tension generation in the premeabilized plasmodial strand of Physarum, Cell Motil ., 1: 432.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Kazuhiro Kohama
    • 1
  • Setsuro Ebashi
    • 2
  1. 1.Department of PharmacologyUniversity of TokyoTokyoJapan
  2. 2.National Institute for Physiological SciencesOkazakiJapan

Personalised recommendations