Advertisement

Quantum Distribution Functions in Non-Equilibrium Statistical Mechanics

  • R. F. O’Connell
Part of the NATO ASI Series book series (NSSB, volume 135)

Abstract

Quantum distribution functions provide a means of expressing quantum mechanical averages in a form which is very similar to that for classical averages. Also, the Bloch equation for the density matrix for a canonical ensemble is replaced by a classical equation and, turning to dynamics, the von Neumann equation describing the time development of the density matrix is replaced by a classical equation which is similar in form to the Liouville equation but contains exactly the same information as the quantum von Neumann equation.

Keywords

Density Matrix Wigner Function Canonical Ensemble Liouville Equation Wigner Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. O’Connell, Found. Phys. 13, 83 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    R. F. O’Connell in Laser Physics, ed. by J. D. Harvey and D. F. Walls (Springer-Verlag, 1983), p. 238. In the third line from the bottom of p. 244 and in the first line of Section 4 on p. 245, the subscript “a” should be replaced by “n”.Google Scholar
  3. 3.
    M. Hillery, R. F. O’Connell, M. O. Scully and E. P. Wigner, Phys. Reports 106 (3), 121 (1984).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    E. P. Wigner, Phys. Rev. 40, 749 (1932).ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    R. J. Glauber, Phys. Rev. 131, 2766 (1963); ibid. Phys. Rev. Lett. 10, 84 (1963).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857, 1882 (1968).Google Scholar
  8. 8.
    P. D. Drummond and C. W. Gardiner, J. Phys. A 13, 2353 (1980); P. D. Drummond, C. W. Gardiner, and D. F. Walls, Phys. Rev. A24, 914 (1981).MathSciNetGoogle Scholar
  9. 9.
    P. D. Drummond and C. W. Gardiner, J. Phys. A 13, 2353 (1980); P. D. Drummond, C. W. Gardiner, and D. F. Walls, Phys. Rev. A24, 914 (1981).MathSciNetGoogle Scholar
  10. 10.
    K. Husimi, Proc. Phys. Math. Soc. Japan 22, 264 (1940).zbMATHGoogle Scholar
  11. 11.
    R. F. O’Connell and E. P. Wigner, Phys. Lett. 85A, 121 (1981).MathSciNetADSGoogle Scholar
  12. 12.
    N. D. Cartwright, Physica 83A, 210 (1976).ADSGoogle Scholar
  13. 13.
    G. S. Agarwal and E. Wolf, Phys. Rev. D2, 2161 (1970); G. S. Agarwal, Phys. Rev. A4, 739 (1971).MathSciNetADSGoogle Scholar
  14. 14.
    R. J. Glauber, in Quantum Optics and Electronics, ed. by C. deWitt, A. Blanden, and C. Cohen-Tannoudji ( Gordon and Breach, New York, 1965 ), p. 65.Google Scholar
  15. 15.
    Y. Kano, Proc. Phys. Soc. (Japan) 19, 1555 (1964); ibid. J. Math. Phys. 6, If 13 (1965).MathSciNetGoogle Scholar
  16. 16.
    J. G. Kirkwood, Phys. Rev. 44, 31 (1933), Eq. (22).ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    R. F. O’Connell and L. Wang, in preparation.Google Scholar
  18. 18.
    R. F. O’Connell and E. P. Wigner, Phys. Rev. A, in press.Google Scholar
  19. 19.
    See, for example, R. Graham in Quantum Statistics in Optics and Solid- State Physics, Vol. 66 of “Springer Tracts in Modern Physics”, edited by G. Höhler ( Springer-Verlag, New York, 1973 ), p. 80.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. F. O’Connell
    • 1
  1. 1.Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA

Personalised recommendations