Nonequilibrium Phenomena at Incommensurate Phase Transitions

  • J. F. Scott
Part of the NATO ASI Series book series (NSSB, volume 135)


In addition to the large number of nonequi1ibrium analogs to phase transitions, such as lasers near threshold, there exists a class of true phase transitions in crystals which display qualitatively nonequi1ibrium phenomena: incommensurate structural phase transitions. In this paper we review the diverse data for incommensurate crystal structures, with special emphasis upon BaMnF4, and show that most experimental phenomena can be explained by the assumption — independently proved — that the dynamics of the material near the phase transition temperature are not those of a system in thermal equilibrium. This explains several qualitative features of the transition in BaMnF4: 1) Vi j ≠ V j i for transverse sound velocities, where ij subscript denotes propagation along i with polarization along j; 2) linear birefringence is proportional to the square of the order parameter, in agreement with theory, whereas both optical activity and monoclinic distortion angle (4’ of arc) are temperature independent, in qualitative disagreement with intrinsic theories; 3) large hysteresis effects are observed even if cycling is confined to the incommensurate phase; 4) the incommensurate a-axis lattice constant is temperature independent in the incommensurate phase, contrary to expectations and contrary to the temperature dependence of the b- and c-axes; 5) the temperature dependence of the incommensurate wave vector satisfies the predictions of the extended Ising model calculation of Yamada and Hamaya, 2a*/5 > qo > 5a*/13 for trajectories in phase space, although that model does not permit as T = 0 ground state either an incommensurate structure or a 2a*/5 phase, in contrast with observations.


Screw Axis Linear Birefringence Incommensurate Phase Temperature Independence Primitive Unit Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. J. DiSalvo, Jr., and T. M. Rice, Physics Today 32:32 (1979); Surf. Sci. 58: 297 (1976).CrossRefGoogle Scholar
  2. 2.
    R. Blinc, Physics Reports 79: 331 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    M. S. Dresselhaus, Physics Today 37: 60 (1984).CrossRefGoogle Scholar
  4. 4.
    I. E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 46:1420 (1964) [Translation: Sov. Phys. 19:960 (1964)].Google Scholar
  5. 5.
    A. W. Overhauser, Phys. Rev. 167:691 (1968); Phys. Rev. B 3: 3173 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    A. Janner and T. Jannssen, Phys. Rev. B 15: 643 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    W. Cochran, Phys. Rev. Lett. 3:521 (1959); G. S. Pawley, W. Cochran, R. A. Cowley, and G. Dolling, Phys. Rev. Lett. 17: 753 (1966).CrossRefGoogle Scholar
  8. 8.
    J. A. Kafalas and A. N. Mariano, Science 143:952 (1964); G. S. Pawley, J. Physique Suppl. 29: C4 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    K. Hamano, Y. Ikeda, T. Fujimoto, K. Ema and S. Hirotsu, J. Phys. Soc. Japan 49: 2278 (1980).ADSCrossRefGoogle Scholar
  10. 10.
    I. J. Fritz, Phys. Lett. 51A: 219 (1975).CrossRefGoogle Scholar
  11. 11.
    S. Kh. Esayan, V. V. Lemanov, N. Mamatkulov, and L. A. Shuvalov, Kristallografia 26:1086 (1981) [Translation: Sov. Phys. Crystallogr. 26:619 (1983)]..Google Scholar
  12. 12.
    J. F. Scott, Ferroelectrics 47: 33 (1983).CrossRefGoogle Scholar
  13. 13.
    V. Dvorak and S. Kh. Esayan, Sol. St. Commun. 44: 901 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    E. T. Keve, S. C. Abrahams, and J. L. Bernstein, J. Chem. Phys. 54: 3185 (1971).ADSCrossRefGoogle Scholar
  15. 15.
    R. Tellgren, D. Ahmad, and R. Liminga, J. Sol. St. Chem. 6: 250 (1973).ADSCrossRefGoogle Scholar
  16. 16.
    R. V. Pisarev, B. B. Krichevtzov, P. A. Markovin, O. Yu. Korshunov, and J. F. Scott, Phys. Rev. B 28: 2677 (1983).ADSCrossRefGoogle Scholar
  17. 17.
    J. Fousek and J. Petzelt, Phys. Stat. Sol. A55:ll (1979); G. Gehring, J. Phys. C10: 531 (1977).Google Scholar
  18. 18.
    W. L. Oliver, T. Yagi, and J. F. Scott (1984, unpublished).Google Scholar
  19. 19.
    D. E. Cox, S. M. Shapiro, R. A. Cowley, M. Eibschutz, and H. G. Guggenheim, Phys. Rev B 19: 575 (1979).ADSGoogle Scholar
  20. 20.
    P. Bak and J. von Boehm, Phys. Rev B 21: 5297 (1980).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    J. Villain and M. B. Gordon, J. Phys. C13:3117 (1981); F. Axel and S. Aubry, J. Phys. C14: 5433 (1981).ADSGoogle Scholar
  22. 22.
    Y. Yamada and N. Hamaya, J. Phys. Soc. Japan 52: 3466 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    C. J. Pater, J. D. Axe, and R. Currat, Phys. Rev. B 19: 4684 (1979).ADSCrossRefGoogle Scholar
  24. 24.
    M. Barthes-Regis, R. Almairac, P. St.-Gregoire, C. Filippini, U. Steigenberger, J. Nouet, and Y. Gesland, J. Physigue Lett. 19: L829 (1983).CrossRefGoogle Scholar
  25. 25.
    J. Schneck and F. Denoyer, Phys. Rev. B 23 (1982); J. Schneck, J. C. Toledano, C. Joffrin, J. Aubree, B. Joukoff, and A. Gabelotaud, Phys. Rev. B 25: 1766 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. F. Scott
    • 1
  1. 1.Condensed Matter Laboratory Department of PhysicsUniversity of ColoradoBoulderUSA

Personalised recommendations