Advertisement

Predictive Statistical Mechanics

  • E. T. Jaynes
Part of the NATO ASI Series book series (NSSB, volume 135)

Abstract

This workshop is concerned with two topics, foundations of quantum theory and of irreversible statistical mechanics, which might appear quite different. Yet the current problems in both fields are basically the same, two different aspects of a deep conceptual hang up that permeates not only physics, but all fields that use probability theory.

Keywords

Quantum Theory Maximum Entropy Classical Statistical Mechanic Frequency Interpretation Maximum Entropy Spectral Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. G. Abels (1974) “Maximum Entropy Spectral Analysis”, Astron. Astrophys. Suppl. 15; 383.Google Scholar
  2. G. Bricogne (1982), in Computational Crystallography, D. Dayre, Editor,pp. 258–264; Oxford University Press, New York.Google Scholar
  3. G. Bricogne (1982), in Computational Crystallography, D. Dayre, Editor,pp. 258–264; Oxford University Press, New York.Google Scholar
  4. G. Bricogne, ed. (1985), Proceedings of the EMBO Workshop on Maximum–Entropy Methods, Orsay, April 24–28, 1984. Applications in crystal and biological macromolecular structure determination from x-ray/ neutron scattering data.Google Scholar
  5. R. K. Bryan, M. Bansal, W. Folkhard, C. Nave, and D. A. Marvin, (1983), “Maximum–Entropy calculation of the electron density at 4A resolution of Pfl filamentous bacteriophage”, Proc. Nat. Acad. Sci. U.S.A. 80, 4728.Google Scholar
  6. S. F. Burch, S. F. Gull & J. Skilling (1983), “Image Restoration by a Powerful Maximum Entropy Method”, Comp. Vision, Graphics & Image Processing, 23, 118–123.Google Scholar
  7. John Parker Burg (1967), “Maximum Entropy Spectral Analysis”, Proc. 37th Annual Meeting, International Society of Exploration Geophysicists, Oklahoma City. Reprinted in Childers (1978).Google Scholar
  8. John Parker Burg (1975), Maximum Entropy Spectral Analysis, Ph.D. ThesisGoogle Scholar
  9. Stanford University.Google Scholar
  10. D. G. Childers, Editor (1978); Modern Spectrum Analysis, IEEE Press and J. Wiley & Sons, N.Y. A reprint collection.Google Scholar
  11. R.T. Cox (1946), “Probability, Frequency, and Reasonable Expectation” Am. J. Phys. 14 1–13. This is greatly expanded in R.T. Cox, The Algebra of Probable Interference, Johns Hopkins University Press, Baltimore (1961).Google Scholar
  12. R. G. Currie (1981), “Solar Cycle Signal in Earth Rotation: Non Behavior”, Science, 211, 386Google Scholar
  13. R. G. Currie (1981), “Evidence for 18.6 year Mn Signal in Temperature and Drought Conditions in North America Since AD 1800”, J. Geophys. Res. 86, #C11, pp. 11055–11064.Google Scholar
  14. R. G. Currie (1981), “Solar Cycle Signal in Air Temperature in North America: Amplitude, Gradient, Phase and Distribution”, J. Atmos. Sci., 38, 809–818.Google Scholar
  15. G. J. Danieli & S. F. Gull (1980), “Maximum Entropy Algorithm Applied to Image Enhancement”, I EE Proc. 127E, 170–172.Google Scholar
  16. A. C. Fabian, R. Willingale, J. P. Pye, S. S. Murray and G. Fabbiano (1980), “The X–Ray Structure and Mass of the Cassiopeia A Supernova Remnant”, Mon. Not. Roy. Astr. Soc., 193, 175–188.Google Scholar
  17. R. Frieden (1972), Restoring with Maximum Likelihood and MaximumGoogle Scholar
  18. Entropy, J. Opt. Soc. Am. 62, 511–518.Google Scholar
  19. B. R. Frieden (1980), “Statistical Models for the Image Restoration Problem”, Computer Graphics and Image Processing, 2, 40–59.Google Scholar
  20. Z. Gburski, C. G. Gray, and D. E. Sullivan, (1984), Chem. Phys. Lett. 106, 55.Google Scholar
  21. B. R. Frieden (1980), “StatisticalModels for the Image Restoration Problem” Computer Graphics and Image Processing, 12, 40-59.Google Scholar
  22. J. Willard Gibbs (1902) Elementary Principles in Statistical Mechanics, reprinted in The Collected Works of J. Willard Gibbs, Vol. 2, by Yale University Press, New Haven, Conn., 1948 and by Dover Publications, Inc., New York, 1960.zbMATHGoogle Scholar
  23. S. F. Gull & G. J. Daniel (1978), “Image Reconstruction from Incomplete and Noisy Data”, Nature 272, 686–690.ADSCrossRefGoogle Scholar
  24. S. F. Gull & G. J. Daniell (1979J, “The Maximum Entropy Method”, in Image Formation from Coherent Functions in Astronomy, C. van Schooneveld, Ed., D. Reidel Pub. Co.Google Scholar
  25. S. F. Gull & J. Skilling (1983), “The Maximum Entropy Method”, IAU/URSI Symposium on Indirect Imaging, Sydney Australia.Google Scholar
  26. S. Gull and J. Skilling (1984), “The Entropy of an Image”, in J. A. Roberts, ed., Indirect Imaging, Cambridge U. Press.Google Scholar
  27. S. Haykin, Editor (1979), Nonlinear Methods of Spectral Analysis, Topics in Applied Physics, Vol. 34; Springer-Verlag, New York.Google Scholar
  28. S. Haykin, Editor (1982). The September 1982 IEEE Proceedings, Vol. 70, is a special issue devoted to spectrum analysis.Google Scholar
  29. W. Heisenberg (1958), Daedalus 87, 100.Google Scholar
  30. K. D. Home (1982), “Eclipse Mapping of Accretion Disks in Cataclysmic Binaries”, Ph.D. Thesis, CalTech. PME with “prior prejudice” favoring circular symmetry.Google Scholar
  31. E. T. Jaynes (1967), “Foundations of Probability Theory and Statistical Mechanics”, in Del aware Seminar in the Foundations of Physics, M. Bunge, Ed., Springer-Verlag, Berlin.Google Scholar
  32. E. T. Jaynes (1976), “Confidence Intervals vs. Bayesian Intervals”, in Foundations of Probability Theory, Statistical Inference, and StatisticalTheories of Science, W. L. Harper and C. A. Hooker, Eds. Reidel Publishing Co., Dordrecht–Holland. Reprinted in Jaynes (1983).Google Scholar
  33. E. T. Jaynes (1978), “Where do we Stand on Maximum Entropy?”, in The Maximum Entropy Formalism, R. D. Levine and M. Tribus, Eds., M.I.T. Press, Cambridge Mass. Reprinted in Jaynes, (1983).Google Scholar
  34. E. T. Jaynes (1980), “The Minimum Entropy Production Principle”, inGoogle Scholar
  35. Annual Review of Physical Chemistry, S. Rabinovitch, Ed., Annual Reviews, Inc., Palo Alto Calif. Reprinted in Jaynes, (1983).Google Scholar
  36. E. T. Jaynes (1983), Papers on Probability, Statistics, and Statistical Physics, R. D. Rosenkrantz, Editor, D. Reidel Publishing Co., Dordrecht–Holland. Contains reprints of the preceding four articles and nine others.Google Scholar
  37. E. T. Jaynes, (1984), “Prior Information and Ambiguity in Inverse Problems”, SIAM–AMS Proceedings, 14, 151–166.MathSciNetGoogle Scholar
  38. E. T. Jaynes, (1985), “The Evolution of Carnot’s Principle”, in Bricogne (1985).Google Scholar
  39. H. Jeffreys (1961), Theory of Probability, Oxford University Press.Google Scholar
  40. R. W. Johnson & J. E. Shore~Tl983), “Minimum-Cross-Entropy Spectral Analysis of Multiple Signals”, IEEE Trans. Acoust. Speech & Signal Processing ASSP-31, 574–582.Google Scholar
  41. J. H. Justice, Ed., (1985), Proceedings of the Workshop on Bayesian/ Maximum Entropy Methods, University of Calgary, August 1984. In Press.Google Scholar
  42. M. C. Kemp (1980), “Maximum Entropy reconstructions in emission tomography”, Medical Radionuclide Imaging, 1, 313–323.Google Scholar
  43. P. S. Laplace (1814), Essai Philosophique sur les Probabilités, Courcier Imprimeur, Paris; reprints of this work and of Laplace’s much larger Theorie Analytique des Probabilités are available from Editions Culture et Civilisation, 115, Ave. Gabriel Lebron, 1160 Brussels, Belgium.Google Scholar
  44. A. K. Livesey (1984), “Structural Investigations of Metallic Glasses”, Ph.D. Thesis, Cambridge University.Google Scholar
  45. A. K. Livesey & J. Skilling (1984), “Maximum Entropy Theory”, Submitted to Acta Cryst.Google Scholar
  46. L. R. Mead & N. Papanicolaou (1984), “Maximum Entropy in the Problem of Moments”, J. Math. Phys. 25, 2404–2417.Google Scholar
  47. G. Minerbo (1979), “MENT: A maximum entropy algorithm for reconstructing a source from projection data”, Comp. Grap. & Image Processing, 10, 48–68.Google Scholar
  48. L. H. Schick and R. Inguva (1981), “Information Theoretic Processing of Seismic Data”, Geophys. Res. Lett. 8, 1199.Google Scholar
  49. P. F. Scott (1981), “A 31 GHz map of W3(0H) with a resolution of 0.3 arsec”, Mon. Not. R. Astr. Soc. 194, 25P–29 P.ADSGoogle Scholar
  50. J. E. Shore & R. W. Johnson (1980), “Axiomatic Derivation of Maximum Entropy and the Principle of Minimum Cross–Entropy”, IEEE Trans. Inform. Theory IT–26, 26–37.Google Scholar
  51. J. E. Shore (1981), “Minimum Cross–Entropy Spectral Analysis”, IEEE Trans. Acoust. Speech & Signal Processing ASSP–29, 230–237.Google Scholar
  52. S. Sabisi (1983), “Two-Dimensional Reconstructions from One-Dimensional Data by Maximum Entropy”, Nature 301, 134–136. S. Sibisi, J. Skilling, R. Brereton, E. D. Laue, J. Staunton (1984), “Maximum Entropy Method in 13C–NMR Spectroscopy” (in preparation for Chemical Communications).Google Scholar
  53. J. Skilling, A. W. Strong, K. Bennett (1979), “Maximum Entropy Image Processing in Gamma–Ray Astronomy”, Mon. Not. Roy. Astron. Soc., 187, 145–152.Google Scholar
  54. J. Skilling (1983), “Maximum Entropy Image Reconstruction from Phaseless Fourier Data”, presented at Optical Soc. Am. meeting on Signal Recovery with Incomplete Information and Partial Constraints Incline Village, Nevada, Jan. 1983.Google Scholar
  55. J. Skilling and S. Gull (1983), “Algorithms and Applications”, in C. R.Google Scholar
  56. Smith & W. T. Grandy (1985). J. Skilling & S. Gull (1984), “The Entropy of an Image”, Am. Math. Soc. SIAM Proceedings, Vol. 14. J. Skilling & R. K. Bryan, (1984), “Image Reconstruction by Maximum–Entropy: General Algorithms”, Mon. Not. Roy. Astr. Soc. In Press.Google Scholar
  57. R. Smith & W. T. Grandy, Editors (1985); Proceedings of the 1981, 1982 1983 Workshops on Maximum Entropy and Bayesian Methods in Inverse Problems; University of Wyoming, Laramie WY 92071 (2 Volumes; in press).Google Scholar
  58. E. Smylie, G. K. C. Clarke, and T. J. Ulrych, (1973), “Analysis of Irregularities in the Earth’s Rotation”, in Computational Physics, B. A. Bolt, B. Alder, & S. Feinbach, Eds., Academic Press, New York.Google Scholar
  59. R. J. Tuffs (1984), Secular Changes in the Supernova Remnant Cassiopeia A,Ph.D. Thesis, Cambridge University, U.K. S. W.Google Scholar
  60. Wilkins, J. N. Varghese & M. S. Lehmann (1983), “Statistical Geometry. I: A Self–Consistent Approach to the Crystallographic Inversion Problem Based on Information Theory”, Acta Cryst. A39, 49–60.Google Scholar
  61. R. Willingale, “Use of the Maximum Entropy Method in X–Ray Astronomy”, Mon. Not. R. Astr. Soc. 194, 359–364.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • E. T. Jaynes
    • 1
  1. 1.St. John’s College and Cavendish LaboratoryCambridgeUK

Personalised recommendations