Advertisement

Self-Consistent Mean Field Theories

  • A. Elçi
Part of the NATO ASI Series book series (NSSB, volume 135)

Abstract

There is a variety of mean field theories Which are also self-consistent, according to differing criteria. In the following discussion I will use the phrase “self-consistent mean field” in a narrowly defined sense. To define this sense, let us consider two systems A and B (Fig. 1) which are coupled. Each consists of many constituents that interact among themselves. The combined A+B system is isolated.

Keywords

Field Approximation Optical Bistability Atomic Ensemble Phase Space Distribution Medium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Picard and C. R. Willis, Phys. Rev. A9 (1974) 343.MathSciNetGoogle Scholar
  2. 2.
    M. Sargent, M. 0. Scully and W. Lamb, Laser Physics (Addison-Wesley, Reading 1974 ).Google Scholar
  3. 3.
    K. Ikeda, Opt. Comm. 30 (1979) 257.ADSCrossRefGoogle Scholar
  4. 4.
    P. Lee and M. O. Scully, Phys. Rev. B3 (1971) 769.ADSCrossRefGoogle Scholar
  5. 5.
    D. H. E. Gross and H. Kalinowski, Physics Reports 45 (1978) 176.ADSCrossRefGoogle Scholar
  6. 6.
    S. Mukamel, et. alf Mici. Phys. A366 (1981) 1339.Google Scholar
  7. 7.
    H. E. Kandrup, Physics Reports 63, No. 1 (1980) 1.MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    S. Chandrashekhar, Principles of Steiler Dynamics ( Dover, New York 1942 ).Google Scholar
  9. 9.
    S. Chandrashekhar and J. von Neumann, Astrophys. J 95 (1942) 489 and 97 (1942) 1.MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    H. E. Kandrup, Astrophys. J. 244 (1981) 316.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    M. Gell-Mann and K. Brueckner, Phys. Rev. 106 (1957) 364.MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    A. Elei, “Semiclassical electrodynamics of alien atoms in interacting media. I: Self-consistent mean field approximation”, Ann. Phys. (N.Y.) (in press).Google Scholar
  13. 13.
    A. Elei, “Semiclassical electrodynamics of alien atoms in interacting media. II:: Two-level systems”, Ann. Phys. (N.Y.) (in press)Google Scholar
  14. 14.
    E. Fermi, Rend. Lincei 5 (1927) 795.Google Scholar
  15. 15.
    J. E. Krizan, Phys. Rev. D3 (1971) 2333.ADSGoogle Scholar
  16. 16.
    C. R. Stroud and E. T. Jaynes, Phys. Rev. Al (1970) 106.ADSCrossRefGoogle Scholar
  17. 17.
    M. D. Crisp and E. T. Jaynes, Phys. Rev. 179 (1969) 1253.ADSCrossRefGoogle Scholar
  18. 18.
    N. D. Lang, Solid State Physics 28 (1973) 225.CrossRefGoogle Scholar
  19. 19.
    M. J. Stott and E. Zaremba, Phys. Rev. B22 (1980) 1564.ADSCrossRefGoogle Scholar
  20. 20.
    S. Sjolander and M. J. Stott, Phys. Rev. B5 (1972) 2109.Google Scholar
  21. 21.
    D. Popovich, et. al, Phys. Rev. B13 (1976) 590.ADSCrossRefGoogle Scholar
  22. 22.
    R. Dorrihaus and G. Nimitz, “The properties and applications of the Hg1-xGdxTe Alloy System”, in Springer Tracts in Modern Physics, Vol. 78 (1976).Google Scholar
  23. 23.
    S. L. McCall, Phys. Rev. A9 (1974) 1515.ADSCrossRefGoogle Scholar
  24. 24.
    V. Benza and L. G. Lugiato, “Semiclassical and quantum statistical dressed mode description of optical bistability”, in Optical Bistability (Plenum Press, New York 1980), eds. C. M. Bowden, M. Cifton and H. R. Rbbl.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. Elçi
    • 1
  1. 1.Institute for Modern Optics Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations