Nonequilibrium Statistical Physics in a Dithered Ring Laser Gyroscope or Quantum Noise in Pure and Applied Physics

  • W. Schleich
  • P. Dobiasch
  • V. E. Sanders
  • M. O. Scully
Part of the NATO ASI Series book series (NSSB, volume 135)


In the year 1851 Foucault demonstrated that the slow rotation of the plane of vibration of a pendulum could be used as evidence of the earth’s own rotation. Nowadays high precision measurements of the earth’s rotation are performed by using radio telescopes in Very Long Baseline interferometry [1]. However, a recent proposal [2] takes advantage of the ultra high sensitivity of a ring laser gyroscope [3] of 10m diameter to monitor changes in earth rate* or Universal time. The underlying principle of such a device is the optical analogue of the Foucault pendulum, the so-called Sagnac effect [5,6]. The frequencies of two counterpropagating waves in a ring interferometer are slightly different when the interferometer is rotating about an axis perpendicular to its plane. Since this frequency difference is proportional to the rotation rate it provides a direct measure of the rotation of the system.


Rotation Rate Langevin Equation Quantum Noise Beat Frequency Ring Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. J. Johnson, J. H. Spencer, C. H. Mayer,W. J. Klepczynski, G.Kaplan, D. D. McCarthy, and G. westerhout, in: “Time and theEarth’s Rotation”, D. D. McCarthy and J. D.Ii. pilkington, eds.,Reidel, Dortredit (1979).Google Scholar
  2. J. G. Small, and W. W. Chow, Research proposal No. 104–113, University of New Mexico, November 1982.Google Scholar
  3. 3.
    W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. 0. Scully, The Ring Laser Gyro: A Tutorial Review, Rev. Mod. Phys., to be published.Google Scholar
  4. 4.
    A. Michelson, The Effect of the Earth’s Rotation on the Velocity of Light, Part I, Astrophys. J. 61:137 (1925). A. Michelson, and H. Gale, The Effect of the Earth’s Rotation on the Velocity of Light, Part II, Astrophys. J. 61: 140 (1925).ADSGoogle Scholar
  5. G. Sagnac, The Luminiferous Aether Demonstrated by the Effect of the Relative Motion of the Aether in an Interferometer in Uniform Rotation, C. R. Acad. Sei. 157:708 (1913), English translation in: “The Einstein Myth and the Ives Papers”, D. Turner and R. Hazelett, eds., Devin-Adair, Old Greenwich, (1979); b) See criticism by H. Witte, Deutsch. Phys. Gesell. Verh. 16:142 (1914).Google Scholar
  6. 6.
    E. J. Post, Sagnac Effect, Rev. Mod. Phys. 39: 475 (1967).ADSCrossRefGoogle Scholar
  7. M. O. Scully, M. S. Zubairy, and M. P. Haugan, Proposed Optical Test of Metric Gravitation Theories, Phys. Rev. A24-.2009 (1981). W. Schleich and M. 0. Scully, General Relativity and Modern Optics in: “Modern Trends in Atomic and Molecular Physics”, Proceedings of the Les Houches Summer School, session XXXVIII, R. Stora and G. Grynberg, eds., North-Holland, Amsterdam (1984).Google Scholar
  8. See for example: C. Misner, K. S. Thorne, and J. A. Wheeler, “Gravitation”, Freeman, San Francisco (1974).Google Scholar
  9. H. Thirring, Über den Einfluss von fernen, rotierenden Massen in der Einsteinschen Gravitationstheorie, Phys. Zeits. 19:33 (1918). J. Lense, and H. Thirring, ;Über den Einfluss der Eigenrotation von Himmelskörpern auf die Bewegung von Planeten und Monden nach der Einsteinschen Relativitätstheorie, Phys. Zeits. 19:156 (1918). An English translation can be found HIS B. Mashhoon, F. W. Hehl, and D. S. Theiss, On the Gravitational Effects of Rotating Masses: The Thirring-Lense Papers, Gen, Rel. Gray, 16; 711 (1984).Google Scholar
  10. See for example: F. Aronowitz, The Laser Gyro, im “Laser Applications”, Vol. lf M. Ross, ed., Academic Press, New York (1977)Google Scholar
  11. J. Killpatrick, The Laser Gyro, IEEE Spectrum 4; 44 (1967).Google Scholar
  12. T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith and H. Statz, The Laser Gyro at Quantum Limit, IEEE J. Quant. Elect. 16:1376 (1980). M. 0. Scully, W. Chow, K. Drühl, V. Sanders, Quantum Noise Limitations and the Determination of Laser Frequency, to be published.ADSCrossRefGoogle Scholar
  13. J. D. Cresser, W. H. Louisell, P. Meystre, W. Schleich, and M. 0. Scully, Quantum Noise in Ring Laser Gyros. I. Theoretical Formulation of Probien, Phys. Rev. A25: 2214 (1982)MathSciNetGoogle Scholar
  14. 14.
    J. D. Cresser, D. Hammens, W. H. Louisell, P. Meystre, and H. Risken, Quantum Noise in Ring Laser Gyros. II. Numerical Results, Phys. Rev. A25: 2226 (1982).Google Scholar
  15. 15.
    J. D. Cresser, Quantum Noise in Ring Laser Gyros. III. Approximate Analytical Results in unlocked Region, Phys. Rev. A26: 398 (1982).Google Scholar
  16. 16.
    W. Schleich, C.-S. Cha, and J. D. Cresser, Quantum Noise in a Dithered Ring Laser Gyroscope, Phys. Rev. A 29: 230 (1984).CrossRefGoogle Scholar
  17. 17.
    S. Singh, Statistical Properties of Single Mode and Two-Mode Ring Lasers, Phys. Reports 108: 217 (1984).CrossRefGoogle Scholar
  18. 18.
    W. Schleich, and P. Dobiasch, Noise Analysis of Ring Laser Gyroscope with Arbitrary Dither, Opt. Carroun. to be published.Google Scholar
  19. 19.
    W. Schleich and P. Dobiasch, to be published.Google Scholar
  20. 20.
    H. Risken, The Fokker-Planck Equation Methods of Solutions and Applications, hn Springer Series in Synergetics, H. Haken, ed., Springer, Berlin, (1984).Google Scholar
  21. M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., “Laser Physics”, Addison-Wesley, Reading (1974).Google Scholar
  22. 22.
    W. M. Macec, and D. T. M. Davis, Rotation Rate Sensing With Traveling-Wave Ring Lasers, Appl, Phys. Lett. 2: 67 (1963).Google Scholar
  23. 23.
    F. Aronowitz, Theory of a Traveling-Wave Optical Maser, Phys. Rev. 139:A635 (1965). L. Menogozzi, and W. E. Lamb, Jr., Theory of a Ring Laser, Phys. Rev. A 8: 2103 (1973).Google Scholar
  24. A. A. Michelson, Philosophical Magazine (London) 8: 716 (1904).Google Scholar
  25. 25.
    See Ref. 21, p. 52.Google Scholar
  26. 26.
    W. E. Lamb, Jr., Theory of an Optical Maser, Phys. Rev. 134: A1429 (1964).CrossRefGoogle Scholar
  27. M. O. Scully, and W. E. Lamb, Jr., Quantum Theory of an Optical Maser. I. General Theory, Phys. Rev. 159: 208 (1967).Google Scholar
  28. 28.
    R. Gauert, Die Lock-in Schwelle von Laserkreiseln als Funktion von Parametern des Ring Lasers, Optik 67: 21 (1984).Google Scholar
  29. 29.
    W. W. Chow, M. 0. Scully,and E. W. Van Stryland, Line Narrowing in a Syirmetry Broken Laser, Opt. Corqtiun. 15: 6 (1975).ADSCrossRefGoogle Scholar
  30. 30.
    Yu. M. Ivanchenko, and L. A. Zil’berman, The Josephson Effect in Small Tunnel Contacts, Sov. Phys.-JETP 28: 1272 (1969).ADSGoogle Scholar
  31. 31.
    H. Haken, H. Sauermann, Ch. Schmidt, and H. D. Vollmer, Theory of Laser Noise in the Phase Locking Region, Z. Phys. 206: 369 (1967).CrossRefGoogle Scholar
  32. 32.
    R. L. Stratonovich, Synchronization of a Self-Excited Oscillator in the Presence of Noise, Radiotekh. i. Elektr. 3: 497 (1958).Google Scholar
  33. 33.
    R. L. Stratonovich, “Topics in the Theory of Random Noise”, Vol. 2, Gordon and Breach, New York (1967).Google Scholar
  34. 34.
    J. Killpatrick, see Ref. 10, p. 159.Google Scholar
  35. 35.
    T. J. Hutchings, and D. C. Stjern, Scale Factor Nonlinearity of a Body Dithered Laser Gyro, in: “Proceedings of the IEEE National Aerospace and Electronics Conference”, X. Y. Unbekannt, ed., IEEE, New York (1978). J. J. Roland, and G. P. Agrawal, Opt. Laser Technol. 13:239 (1981). A. Bambini, and S. Stenholm, Theory of a Dithered Ring Laser Gyro I: The Floquet Treatment, to be published.Google Scholar
  36. A. Bambini, and S. Stenholmf Analysis of Nonlinear Response in a Body Dithered Ring Laser Gyro, Opt. Coirmun. 49: 269 (1984).ADSCrossRefGoogle Scholar
  37. 37.
    W. Schleich, M. 0. Scully, and V. E. Sanders, Quantum Noise in Ring Laser Gyroscopes, in: “Coherence and Quantum Optics V”, L. Mandel and E. Wolf, eds.. Plenum, New York (1984).Google Scholar
  38. 38.
    W. Hi Louisell, Quantum Statistical Properties of Radiation, John Wiley, New York (1973).Google Scholar
  39. 39.
    N. N. Bogoliubov, Y. A. Mitropolsky, “Asymptotic Methods in the Theory of Nonlinear Oscillations”, Hindustan Publishing Corpn., Delhi (1961).Google Scholar
  40. 40.
    W. Magnus, F. Oberhettinger, and R. P. Soni, “Formulas and Theorems for the Special Functions of Mathematical Physics”, Springer, Berlin (1966).zbMATHGoogle Scholar
  41. 41.
    W. Schleich, P. Dobiasch, and H. Risken, Harmonic Frequency Mixing in a Cosine Potential, to be published.Google Scholar
  42. 42.
    H. Risken, and H. D. Vollmer, Solutions and Applications of Tridiagonal Vector Recurrence Relations, Z. Phys. B 39: 339 (1980).MathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • W. Schleich
    • 2
  • P. Dobiasch
    • 1
  • V. E. Sanders
    • 3
  • M. O. Scully
    • 4
    • 1
  1. 1.Max-Planck-Institut für QuantenoptikGarching bei MünchenWest Germany
  2. 2.Center for Theoretical PhysicsUniversity of Texas at AustinAustinUSA
  3. 3.Rockwell Int. A.M.S.D.AnaheimUSA
  4. 4.Institute for Modern OpticsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations