Advertisement

Empty Nonlinear Optical Resonators

  • A. Dorsel
  • W. J. Firth
  • A. Guzman de Garcia
  • J. D. McCullen
  • F. Marquis
  • P. Meystre
  • D. P. J. O’Brien
  • G. Reiner
  • M. SargentIII
  • K. Ujihara
  • E. Vignes
  • H. Walther
  • E. M. Wright
Chapter
Part of the NATO ASI Series book series (NSSB, volume 135)

Abstract

Ever since the invention of the laser, there has been considerable interest in the study of nonlinear optical resonators (NOR). A NOR is any optical resonator containing at least one nonlinear element. In the laser, this element is the active, inverted medium, and in conventional optical bistability, it is passive absorptive or dispersive material. In these notes, we concentrate on two kinds of NOR’s that have received considerable attention in recent years. They distinguish themselves from more conventional ones by the fact that they are empty, one of the mirrors itself being the source of the nonlinear behaviour. The simplest such NOR is a radiation-pressure driven optical resonator, which we showed recently1 to exhibit optical bistability. Section 2–1 briefly reviews the physics of this system, and shows its analogy - and differences - with an optical resonator filled with a Kerr medium. We also discuss mirror confinement, i.e., the possibility of trapping a macroscopic mirror in the potential well due to the combined effects of radiation pressure and the restoring force of the mirror. An improved, three-mirror cavity version of the system2 is then discussed in Sec. 2–2, and a noise analysis including both the effects of white and ground noise is presented in Sec. 2–3.

Keywords

Radiation Pressure Optical Bistability Optical Resonator Pump Field Kerr Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Dorsel, j. D. McCullen, P. Meystre, E. Vignes, H. Walther, Phys. Rev. Lett. 51, 1550 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    J. D. McCullen, P. Meystre, and E. M. Wright, Opt. Lett. 9, 193 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    Optical Phase Conjugation, Ed. by R. A. Fisher, Academic, NY (1983)Google Scholar
  4. 4.
    A. Yariv and D. M. Pepper, Opt. Lett. 1, 16 (1977)ADSCrossRefGoogle Scholar
  5. 5.
    R. Dändliken and T. Tschudi, Appl. Opt. 8, 1119 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    H. Risken, The Fokker-Planck Equation, Methods of Solutions and Applications, Springer- Verlag, Heidelberg (1984)Google Scholar
  7. 7.
    J. S. Bendat and A. G. Piersol, Measurement and Analysis of Random Data, John Wiley, NY (1966)Google Scholar
  8. 8.
    H. Billing, W. Winkler, R. Schilling, A. Rüdiger, K. Maischberger, and Measurement Theory, Ed. by P. Meystre and M. O. Scully, Plenum Press (1983)Google Scholar
  9. 9.
    A. E. Siegman, P. A. Belanger, and A. Hardy, in Optical Phase Conjugation, Ed. by R. A. Fisher, Academic Press, NY (1983)Google Scholar
  10. 10.
    J. Au Yeung, D. Fekete, D. M. Pepper, and A. Yariv, IEEE J. Quant Electron. QE-15, 1180 (1979)Google Scholar
  11. 11.
    P. Belanger, A. Hardy, and A. E. Siegman, Appl. Opt. 19, 602 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    R. C. Lind and D. G. Steel, Opt. Lett. 6, 554 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Jian-quan, Z. Guosheng, and A. E. Siegman, Appl. Phys. B30, 11 (1983)CrossRefGoogle Scholar
  14. 14.
    A. Hardy and Y. Silberberg, J. Opt. Soc. Am. 73, 594 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    E. M. Wright and P. Meystre, submitted to Opt. Lett.Google Scholar
  16. 16.
    E. Ott, Rev. Mod. Phys. 53, 655 (1981)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    R. Y. Chiao, P. L. Kelley, and E. Garmire, Phys. Rev. Lett. 17, 1198 (1966); R. L. Carman, R. Y. Chiao, Phys. Rev. Lett. 17, 1281 (1966)ADSGoogle Scholar
  18. 18.
    A. M. Lazaruk, Opt. Spectrosc. 53, 633 (1982)ADSGoogle Scholar
  19. 19.
    E» M. Wright, PhD thesis, Heriot-Watt University, Edinburgh (1983)Google Scholar
  20. 20.
    Solutions similar to these have also been employed by W. J. Firth to investigate the stability of bistable devices, see e.g., W. J. Firth, Opt. Comm. 39,„343 (1981)Google Scholar
  21. 21.
    E. M. Wright and P. Meystre, to be publishedGoogle Scholar
  22. 22.
    K. Ikeda, Opt. Comm. 30, 257 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    W. J. Firth, E. M. Wright, and E. J. D. Cummins, in Optical Bistability 2, C. M. Bowden, H. M. Gibbs, and S. L. McCall, Eds., Plenum, NY (1984)Google Scholar
  24. 24.
    M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978) and 21, 669 (1979)ADSCrossRefGoogle Scholar
  25. 25.
    Chaos in radiation pressure bistability has been studied by W. J. Firth and D. Hewitt, unpublishedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. Dorsel
    • 1
  • W. J. Firth
    • 2
  • A. Guzman de Garcia
    • 3
  • J. D. McCullen
    • 4
  • F. Marquis
    • 3
  • P. Meystre
    • 3
  • D. P. J. O’Brien
    • 3
  • G. Reiner
    • 3
  • M. SargentIII
    • 3
    • 5
  • K. Ujihara
    • 3
    • 6
  • E. Vignes
    • 7
  • H. Walther
    • 1
    • 3
  • E. M. Wright
    • 3
  1. 1.Sektion PhysikUniversität MünchenGarchingGermany
  2. 2.Department of PhysicsHeriot-Watt UniversityEdinburghUK
  3. 3.Max-Plank-Institut für QuantenoptikGarchingGermany
  4. 4.Department of PhysicsUniversity of ArizonaTucsonUSA
  5. 5.Optical Sciences CenterUniversity of ArizonaTucsonUSA
  6. 6.University of Electro-communicationsChofu, TokyoJapan
  7. 7.Department of PhysicsUCSDLa JollaUSA

Personalised recommendations