Retarded Systems: The Road to Chaos

  • J. M. Aguirregabiria
  • L. Bel
Part of the NATO ASI Series book series (NSSB, volume 135)


We show that one expects a cascade of dominant reductions (asymptotic approximation of a retarded equation by an ordinary one) of increasing orders in the process of evolution from the “laminar” regime to the “turbulent” one. We report also on some preliminary numerical evidence confirming the theoretical expectation for the first two steps of the cascade, in particular for optical hybrids with a time delay akin with non linear optical cavities.


Predictive Equation Positive Real Part Classical Field Theory Large Real Part Tuning Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Kerner, Can the Position Variable be a Canonical Coordinate in Relativistic Many-Particle Theory ?, J. Math. Phys., 6: 1218 (1965).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    L. Bel, A. Salas and J. M. Sanchez-Ron, Approximate Solutions of Predictive Relativistic Mechanics for the Electromagnetic Interaction, Phys. Rev. D, 7: 1099 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    L. Bel and J. Martin, Approximate Solutions of Predictive Relativistic Mechanics for the Electromagnetic Interaction. II, Phys. Rev. D, 8: 4347 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    A. Salas and J. M. Sanchez-Ron, Predictive Solutions of Classical Electrodynamics, Nuovo Cimento, 20 B: 209 (1974).CrossRefGoogle Scholar
  5. 5.
    D. Hirondel, Free-particle-like formulation of Newtonian instantaneous saction-at-a-distance electrodynamics, J. Math. Phys., 15: 1689 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    L. Bel and J. Martin, Approximate solutions of predictive relativistic mechanics for short-range scalar interactions, Phys. Rev. D, 9: 2760 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    L. Bel and X. Fustero, Mécanique relativiste prédictive des systèmes de N particules, Ann. Inst. H. Poincaré, XXV: 411 (1976).Google Scholar
  8. 8.
    R. Lapiedra and A. Molina, Classical predictive electrodynamics of two charges with radiation: General framework. I, J. Math. Phys., 20: 1308 (1979).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    J. L. Sanz, Two charges in an external electromagnetic field: A generalized covariant Hamiltonian Formulation, Ann. Inst. H. Poincaré, XXXI: 115 (1979).Google Scholar
  10. 10.
    M. Portilla, Momentum and angular momentum of two gravitating particles, J. Phys. A, 12: 1075 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    L. Bel, Th. Damour, N. Deruelle, J. Ibanez and J. Martin, Poincaré-Invariant Gravitational Field and Equations of Motion of two Point like Objects: The Postlinear Approximation of General Relativity, Gen. Gel. Grav., 13: 963 (1981).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    X. Fustero, L. Mas and R. Lapiedra, Predictive mechanics of magnetic monopoles and electric charges, Phys. Rev. D, 12: 3474 (1977).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    L. Bel, Spontaneous Predictivisation, In “Relativistic Action at a Distance: Classical and Quantum Aspects” (Lectures Notes in Physics No. 162 ), J. Llosa, ed., Springer-Verlag, Berlin (1982).Google Scholar
  14. 14.
    L. Bel, Prédictivisation spontanée des systèmes dynamiques héréditaires, C. R. Acad. Sci., 294: 463 (1982).MathSciNetzbMATHGoogle Scholar
  15. 15.
    L. Bel, Predictivizacion espontanea de los sistemas dinámicos hereditarios, in “Encuentros Relativistas 82,” Universidad del Pais Vasco, Bilbao (1982).Google Scholar
  16. 16.
    K. Ikeda, Multiple-Valued Stationary State and its Instability of the Transmitted Light by a Ring Cavity System, Opt. Commun., 30: 257 (1979).ADSCrossRefGoogle Scholar
  17. 17.
    K. Ikeda, H. Daido and O. Akimoto, Optical Turbulence: Chaotic Behaviour of Transmitted light from a Ring Cavity, Phys. Rev. Lett., 45: 709 (1980).ADSCrossRefGoogle Scholar
  18. 18.
    H. M. Gibbs, F. A. Hopf, D. L. Kaplan and R. L. Shoemaker, Observation of Chaos in Optical Bistability, Phys. Rev. Lett., 46: 474 (1981).ADSCrossRefGoogle Scholar
  19. 19.
    R. Bellman and K. L. Cooke, “Differential-Difference Equations,” Academic Press, New York (1963).zbMATHGoogle Scholar
  20. 20.
    L. E. El ‘sgol’ ts and S. B. Norkin, “Introduction to the Theory and Application of Differential Equations with Deviating Arguments,” Academic Press, New York (1973).zbMATHGoogle Scholar
  21. 21.
    R. D. Driver, “Ordinary and Delay Differential Equations,” Springer-Verlag, New York (1973).Google Scholar
  22. 22.
    J. M. Aguirregabiria and L. Bel, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. M. Aguirregabiria
    • 1
  • L. Bel
    • 1
  1. 1.Laboratoire de Physique ThéoriqueInstitut H. PoincaréParisFrance

Personalised recommendations