Equation of Motion for Correlation Function of Strongly-Coupled Plasma

  • Richard L. Liboff
Part of the NATO ASI Series book series (NSSB, volume 135)


The spatial correlation function for a one-component plasma (OCP)1,2,3,4 may be constructed within two different formalisms. These involve: (a) derivation from the partition function for the system5,6,7 and (b) construction of an equation of motion for the correlation function8,9,10,11 stemming from the BBKGY12,13,14 sequence. In the present work, a new linear, second-order differential equation for strongly-coupled plasmas is constructed from a generic form obtained previously11 within the scheme (b). The new equation incorporates fundamental statistical mechanical properties of the correlation function and is further augmented to give results in accord with previous numerical studies.15,16


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Lieb and H. Narnhofer, J. Stat. Phys. 12, 291 (1975).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    C. Deutsch, Y. Forutani and M. Gombart, Phys. Rev. A 13, 2244 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    R. L. Liboff, Am. J. Phys. 48, 532 (1980).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    S. Ichimaru, Revs. Mod. Phys. 54, 1017 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    D. D. Carley, Phys. Rev. 131, 1406 (1963).ADSCrossRefGoogle Scholar
  6. 6.
    D. L. Bowers and E. E. Salpeter, Phys. Rev. 119, 1180 (1960).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    M. S. Cooper, Phys. Rev. A 7, 1 (1973).ADSCrossRefGoogle Scholar
  8. 8.
    E. A. Freeman and D. L. Book, Phys. Fluids 6, 1700 (1963).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    L. C. Levitt, J. M. Richardson and E. R. Cohen, Phys. Fluid 10, 406 (1967).ADSCrossRefGoogle Scholar
  10. 10.
    R. Cauble and J. J. Duderstadt, Phys. Rev. A 23, 3182 (1981).ADSCrossRefGoogle Scholar
  11. 11.
    M. A. Guillen and R. L. Liboff, “Unified kinetic theory of plasma Correlations,” to be published: J. Plasma Phys. (1984).Google Scholar
  12. 12.
    R. L. Liboff, “Introduction to the Theory of Kinetic Equations,” Krieger, Melbourne, FL (1979).Google Scholar
  13. 13.
    R. L. Liboff and G. E. Perona, J. Math. Phys. 8, 2001 (1967).ADSCrossRefGoogle Scholar
  14. 14.
    N. N. Bogoliubov, “Problemi Dynamitcheskij Theorie v Statistitcheskey Phisike,” OGIS, Moscow (1946).Google Scholar
  15. 15.
    S. G. Brush, H. L. Sahlin and E. Teller, J. Chem. Phys. 45, 2102 (1966).ADSCrossRefGoogle Scholar
  16. 16.
    M. Baus and J. P. Hansen, Phys. Repts. 59, 1 (1980).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    N. Rostoker and M. N. Rosenbluth, Phys. Fluids 3, 1 (1960).MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    L. J. Caroff and R. L. Liboff, J. Plasma Phys. 4, 83 (1970).ADSCrossRefGoogle Scholar
  19. 19.
    R. L. Liboff, “Criteria for physical domains in laboratory and solid state plasmas,” to be published: J. Appl. Phys. (1984).Google Scholar
  20. 20.
    D. M. Heffernan and R. L. Liboff, J. Plasma Phys. 27, 473 (1982).ADSCrossRefGoogle Scholar
  21. 21.
    D. L. Goodstein, “States of Matter,” Prentice-Hall, Englewood Cliffs, NJ (1975)Google Scholar
  22. 22.
    D. A. McQuarrie, “Statistical Mechanics,” Harper and Row, New York.Google Scholar
  23. 23.
    W. B. Kunkel, “Plasma Physics in Theory and Application,” McGraw Hill, New York (1966).Google Scholar
  24. 24.
    N. A. Krall and A. W. Trivelpiece, “Principles of Plasma Physics,” McGraw Hill, New York (1973)Google Scholar
  25. 25.
    P. Debye and E. Huckel, Phys. Z. 24, 185 (1923).Google Scholar
  26. 26.
    G. L. Lamb and B. Burdick, Phys. Fluids 7, 1087 (1964)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    B. Widom, J. Chem. Phys. 39, 2808 (1963).ADSCrossRefGoogle Scholar
  28. 28.
    E. T. Whittaker and G. N. Watson, “A Course of Modern Analysis,” Cambridge University, Cambridge (1952)Google Scholar
  29. 29.
    R. L. Liboff, “Introductory Quantum Mechanics,” Holden Day, Oakland, CA (1981).Google Scholar
  30. 30.
    E. Kamke, “Differentialgleichungen,” Akademische Verlagsgesellschaft, Leipzig (1943), Vol. I, 2nd Ed.Google Scholar
  31. 31.
    E. L. Ince, “Ordinary Differential Equations,” Longmans, Green and Co., London (1927).zbMATHGoogle Scholar
  32. 32.
    A. Erdélyi, “Asymptotic Expansions,” Dover, New York (1956).zbMATHGoogle Scholar
  33. 33.
    C. Bender and S. Orszag, “Advanced Mathematics for Scientists and Engineers,” McGraw Hill, New York (1978).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Richard L. Liboff
    • 1
  1. 1.Schools of Applied Physics and Electrical EngineeringCornell UniversityIthacaUSA

Personalised recommendations