Advertisement

Use of Quantum Trajectories for Time-Dependent Problems

  • M. Kleber
Part of the NATO ASI Series book series (NSSB, volume 135)

Abstract

Ehrenfest’s principle states the correspondence between a classical trajectory and the expectation values of the corresponding quantum operator. In most cases the equations of motion for the average values of momentum, position, etc. are not closed and, therefore, cannot be solved without further assumptions. It is then useful to rewrite the Schrodinger equation as a time-dependent eigenvalue equation. In the following we shall outlines (1) how to solve the eigenvalue problem within variational perturbation theory, (2) how to calculate quantum trajectories, and (3) how to determine transition probabilities from trajectories. The method presented here will be illustrated by two examples from scattering theory.

Keywords

Wave Function Variational Principle Classical Trajectory Gaussian Wave Packet Trial Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Kleber and J. Zwiegel, Phys. Rev. A19, 579 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    K. Unterseer and M. Kleber, Nucl. Instr. and Meth. 192, 35 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    M. S. Child, “Molecular Collision Theory”, Academic Press, London and New York 1974.Google Scholar
  4. 4.
    W. Elberfeld and M. Kleber, J. Phys. B16, 3557 (1983).MathSciNetADSGoogle Scholar
  5. 5.
    H. W. Lee and M. O. Scully, J. Chem. Phys. 73, 2238 (1980).MathSciNetADSGoogle Scholar
  6. 6.
    L. Spruch in “Boulder Lectures in Theoretical Physics”, Gordon and Breach, New York 1969, Vol. XI-C, p. 77.Google Scholar
  7. 7.
    L. Aspinall and J. C. Percival, J. Phys. B1, 589 (1968).ADSGoogle Scholar
  8. 8.
    J. Krause and M. Kleber, to be published in Phys. Rev. A.Google Scholar
  9. 9.
    Yu. N. Demkov, Sov. Physics JBTP 11 1351 (1960).MathSciNetzbMATHGoogle Scholar
  10. 10.
    M. Clemente, et al., Phys. Lett. 137B, 41 (1984).Google Scholar
  11. 11.
    E. Wigner, Phys. Rev. 40, 749 (1932).ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. Kleber
    • 1
    • 2
  1. 1.Institute for Theoretical SciencesUniversity of New MexicoAlbuquerqueUSA
  2. 2.Physik DepartmentT. U. MünchenGarching bei MünchenWest Germany

Personalised recommendations