Experimental Tests of Bell’s Inequalities with Pairs of Low Energy Correlated Photons

  • Alain Aspect
Part of the NATO ASI Series book series (NSSB, volume 135)

Abstract

Early in the development of quantum mechanics1, the following question was raised: is it possible (is it necessary) to understand the probabilistic nature of the predictions of quantum mechanics by invoking a more precise description of the world, at a deeper level ? Such a description would complete quantum mechanics, like statistical mechanics complete thermodynamics by invoking the motions of the molecules. Reasoning on a Gedanken-experiment, Einstein Podolsky and Rosen2 concluded to the necessity of completing quantum mechanics. On the other hand, Bohr disagreed with this conclusion3, and one could think that the commitment to either position was only a matter of taste or of philosophical position. This situation changed dramatically when John Bell4 discovered that the two points of view lead to different predictions for the Bohm’s version5 of the E.P.R. Gedanken-experiment. Bell’s paper opened a route towards real experiments. The closest realization of that Gedanken-experiment uses pairs of low energy photons correlated in polarization, as suggested in the late sixties by Clauser, Home, Shimony and Holt6. The second part of this paper will be devoted to the description of these experiments.

Keywords

Mercury Propa Calcite Rosen Krypton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, N.J, (1955).MATHGoogle Scholar
  2. 2.
    A. Einstein, P. Podolsky and N. Rosen, Can Quantum Mechanical description of physical reality be considered complete ?, Phys. Review 47; 777 (1935).ADSMATHCrossRefGoogle Scholar
  3. 3.
    N. Bohr, Can Quantum-Mechanical description of physical reality be considered complete ?, Phys. Rev, 48; 696 (1935).ADSMATHCrossRefGoogle Scholar
  4. 4.
    J.S. Bell, On the Einstein-Podolsky-Rosen Paradox, Physics 1 195 (1964). J.S. Bell, Introduction to the Hidden-Variable Question, in; “Foundations of Quantum Mechanics”, B. d’Espagnat ed., Academic, N.Y. (1972).Google Scholar
  5. 5.
    D. Bohm, “Quantum Theory”, Prentice-Hall, Englewoods Cliffs, N.J. (1951).Google Scholar
  6. 6.
    J. F. Clauser, M.A. Home, A. Shimony and R.A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23: 880 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    J.F. Clauser and A. Shimony, Bell’s Theorem: Experimental Tests and Implications, Rep. Progr. Phys. 41: 1881 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    F. Selleri and G. Tarrozzi, Quantum Mechanics Reality and Separability Riv. Nuovo Cimento 4: 1 (1981).Google Scholar
  9. 9.
    D. Bohm and Y. Aharonov, Discussion of Experimental Proof for the paradox of Einstein, Rosen and Podolsky, Phys. Rev. 108: 1070 (1957).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    J.F. Clauser, and M.A. Horne, Experimental consequences of objective local theories, Phys. Rev. D 10: 526 (1974).ADSGoogle Scholar
  11. 11.
    A. Fine, Hidden Variables, Joint Probability, and the Bell Inequalities, Phys. Rev. Lett. 48: 291 (1982).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    A. Aspect, Proposed Experiment to Test Separable Hidden-Variable Theories, Phys. Lett. 54 A: 117 (1975). A. Aspect, Proposed Experiment to test the nonseparability of Quantum Mechanics, Phys. Rev. D 14; 1944 (1976).ADSGoogle Scholar
  13. 13.
    E.S. Fry, Two-photons Correlations in Atomic Transitions., Phys. Rev. A 8: 1219 (1973).ADSGoogle Scholar
  14. 14.
    S. J. Freedman and J.F. Clauser, Experimental test of local hidden-variable theories, Phys. Rev. Lett. 28: 938 (1972).ADSCrossRefGoogle Scholar
  15. 15.
    F. M. Pipkin, Atomic Physics Tests of the Basic Concepts in Quantum Mechanics, in: “Advances in Atomic and Molecular Physics”, D.R, Bates and B. Bederson, ed., Academic (1978).Google Scholar
  16. 16.
    J.F. Clauser, Experimental investigation of Polarization Correlation Anomaly, Phys. Rev. Lett. 36: 1223 (1976).ADSCrossRefGoogle Scholar
  17. 17.
    E. S. Fry, and R.C. Thompson, Experimental Test of Local Hidden-Variable Theories, Phys. Rev. Lett. 37: 465 (1976).ADSCrossRefGoogle Scholar
  18. 18.
    A. Aspect, C. Imbert, and G. Roger, Absolute Measurement of an Atomic Cascade Rate Using a Two Photon coincidence Technique. Application to the 4p21So - 4s4p 1P1–4s21So Cascade of Calcium excited by a Two Photon Absorption, Opt. Comm. 34: 46 (1980).ADSCrossRefGoogle Scholar
  19. 19.
    A. Aspect, P. Grangier and G. Roger., Experimental Tests of Realistic Local Theories via Bell’s Theorem, Phys. Rev. Lett. 47: 460 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    A. Aspect, P. Grangier and G. Roger., Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities, Phys. Rev. 1Lett. 49: 91 (1982).CrossRefGoogle Scholar
  21. 21.
    A. Garuccio and V.A. Rapisarda, Bell’s Inequalities and the Four-Coincidence Experiment, Nuovo Cimento 65 A: 269 (1981). V.A. Rapisarda, On the measurement by Dichotomic Analyzers of the Polarization Correlation of Optical Photons Emitted in Atomic Cascade, Lett. Nuovo Cimento 33: 437 (1982).CrossRefGoogle Scholar
  22. 22.
    A. Aspect, J. Dalibard and G. Roger, Experimental Test of Bell’s Inequalities Using Variable Analyzers, Phys. Rev. Lett. 49, 1804 (1982).MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    T. K. Lo, and A. Shimony, Proposed Molecular Test of Local Hidden-Variables Theories, Phys. Rev. A 23: 3003 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    P. Grangier, Correlation de polarisation de photons émis dans la cascade 4p21So - 4s4p 1P1 - 4s21So du Calcium: test des inégalités de Bell. Thèse de 3ème Cycle, Paris (1982) M. O. Scully, How to make quantum mechanics look like a hidden- variable theory and vice versa, Phys. Rev. D 10: 2477 (1983). Although it is not fully pointed out by the author, this last model can be imbedded in a generalized formalism of local supplementary parameters theories4,10, with quantities - interpreted as probabilities - assuming values greater than 1 or negative.Google Scholar
  25. 25.
    W. Mückenheim, A resolution of the Einstein-Podolsky-Rosen Paradox, Lett. Nuovo Cim. 35: 300 ( 1981 ). R. P. Feynman, Negative Probabilities, Preprint, California Institute of Technology, Pasadena (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Alain Aspect
    • 1
  1. 1.Institut d’Optique Théorique et Appliquée Bâtiment 503Centre Universitaire d’OrsayOrsay CedexFrance

Personalised recommendations