Advertisement

Can Septal Grafting Facilitate Recovery from Physiological and Behavioral Deficits Produced by Fornix Transections?

  • Menahem Segal
  • Norton W. Milgram
Part of the Advances in Behavioral Biology book series (ABBI, volume 29)

Abstract

There is now considerable evidence which links the severe memory deficit of dementia of the Alzheimer type (AD) to degeneration of cholinergic basal forebrain neurons and a corresponding reduction in forebrain acetylcholine (ACh) (1–5), The significance of such correlations are strengthened by observations of memory deficits in animals produced by either pharmacological blocking of ACh or by specific brain lesions (6). In spite of this evidence, attempts to alleviate memory deficits in AD patients by pharmacological manipulation of acetylcholine has had only limited success (7). It is consequently of considerable importance to evaluate the feasibility of treating cognitive dysfunctions by other means such as the recently developed procedure of grafting fetal neural tissue into adult hosts (8,9,10). The present studies were undertaken with this purpose in mind. We have been studying the effects of grafted cholinergic neurons on an animal model of AD produced by denervation of the cholinergic input of the hippocampus.

Keywords

Theta Activity Theta Rhythm Septal Nucleus Septal Tissue Basal Forebrain Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.K. Perry, R.H. Perry, P.H. Gibson, G. Blessed and B.E. Tomlinson, A cholinergic connection between normal aging and senile dementia in the human hippocampus, Neurosc. Lett. 3:88 (1977).Google Scholar
  2. 2.
    E.K. Perry, B.E. Tomlinson, G. Blessed, K. Bergmann, P.H. Gibson and R.H. Perry, Correlation of cholinergic abnormalities with senile plaques and mental test scores in senila dementia, Br. Med. J. 2:1457 (1978).Google Scholar
  3. 3.
    D.A. Drachman and J.R. Hughes, Memory and the hippocampal complex III aging and temporal EEG abnormalities, Neurology 21: 1 (1971).PubMedGoogle Scholar
  4. 4.
    B.T. Hyman, G.W. Van Hoesen, A.R. Damasio and C.L. Barnes, Alzheimer’s disease: cell specific pathology isolates the hiDDOcamDal formation, Science 225: 1168 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    A.S. Lippa, D.J. Critchett, F. Ehlert, H.L. Yamamura, S.J. Enna and R.T. Bartus, Age related alterations in neurotransmitter receptors: an electrophysiological and biochemical analysis. Neurobiol. of Aging 2: 3 (1981).CrossRefGoogle Scholar
  6. 6.
    J. O’Keefe and L. Nadel, The hippocampus as a cognitive map, Clarendon Press, Oxford, 1978.Google Scholar
  7. 7.
    S. Corkin, K.L. Davis, J.H. Growdon, E. Usdin and R.J. Wurtman, Alzheimer’s disease: a report of progress in research, Raven Press, N.Y. (1982).Google Scholar
  8. 8.
    A. Bjttrklund, F.H, Gage, U. Stenevi and S.B. Dunnett, Survival andgrowth of intrahippocampal implants of septal cell suspensions, Acta Physiol. Scand. Suppl. 522:49 (1983).Google Scholar
  9. 9.
    A. Bjttrklund, U. Stenevi, R.H. Schmidt, S.B. Dunnett and F.H. Gage, Introduction and general methods of preparation, Acta Physiol. Scand. Suppl. 522:1 (1983).Google Scholar
  10. 10.
    S.B. Dunnett, W.C. Low, S.D. Iversen, U. Stenevi and A. Bjttrklund, Septal transplants restore maze learning in rats with fornix fimbria lesions, Brain Res. 251: 335 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Krnjevic, R. Pumain and L. Renaud, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. (Lond.) 215:247 (1971).Google Scholar
  12. 12.
    A.E. Cole and R.A. Nicoll, Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells, Science 221: 1299 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    J.V. Halliwell and P.R. Adams, Voltage clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250: 71 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Segal, Multiple actions of acetylcholine at a muscarinic.receptor in rat hippocampal slices, Brain Res. 246: 77 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    G. G. Buzsaki, L.W.S. Leung and C.H. Vanderwolf, Cellular bases of hippocampal EEG in the behaving rat, Brain Res. Reviews 6:139 (1983).Google Scholar
  16. 16.
    C.H. Vanderwolf, R. Kramis, L.A. Gillespie and B.H. Bland, Hippocampal slow activity and neocortical low voltage fast activity: relations to behavior, in: “The Hippocampus”, Vol. 2, R.L. Issac- son and K. Pribram, eds., Plenum Press, N.Y. (1975).Google Scholar
  17. 17.
    H. Petsche, C.H. Stumpf and G. Gogolak, The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. I. Control of hippocampal arousal activity by the septum cells. Electroencephalog. Clin. Neurophysiol. 14:202 (1962).Google Scholar
  18. 18.
    O. Macadar, J.A. Roig, J.M. Monti and R. Budelli, The functional relationship between septal and hippocampal unit activity and hippocampal theta rhythm, Physiol. Behav. 5:1443 (1970).Google Scholar
  19. 19.
    G. Gogolak, C.H. Stumpt, H. Petsche and F. Sterc, The firing patterns of septal neurons and the form of hippocampal theta wave. Brain Res. 7: 201 (1968).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Drucker-Colin, R. Aguilar-Roblero, F. Garcia Hernandez, F. Fernandez-Cancino and F. Bermudez Rattoni, Fetal suprachiasmatic nucleus transplants: diurnal rhythm recovery of lesioned rats, Brain Res. 311: 353 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    S.B. Dunnett, S.T. Bunch, F.H. Gage and A. Bjttrklund, Dopamine-rich transplants in rats with 6-0HDA lesions of the ventral tegmental area: 1. Effects on spontaneous and drug-induced locomotor activity. Behavioral Brain Res. 13: 71 (1984).CrossRefGoogle Scholar
  22. 22.
    D. Gash, J.R. Sladek and S.D. Sladek, Functional developmental of grafted vasopressin neurons, Science 210: 1367 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    W.C. Low, P.R. Lewis, T.S. Bunch, S.B. Dunnett, S.R. Thomas, S.D. Iversen, A. Bjttrklund and U. Stenevi, Functional recovery following neural transplantation of embryonic septal nuclei in adult rats with septohippocampal lesions, Nature 300: 260 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Segal, A. Bjttrklund and F.H. Gage, Transplanted septal neurons make viable cholinergic synapses with a host hippocampus, Brain Res. (1985) in press.Google Scholar
  25. 25.
    F.H. Gage, S.B. Dunnett, U. Stenevi and A. Bjttrklund, Aged rats:recovery of motor impairments by intrastriatal nigral grafts, Science 221:966 (1983).Google Scholar
  26. 26.
    B. Srebro and S.I. Mellgren, S.I., Changes in postnatal development fo acetylcholinesterase in the hippocampal region after early septal lesion in the rat, Brain Res. 79: 119 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    R. Morris, Developments of a water-maze procedure for studying spatial learning in the rat, J. Neurosci. Methods 11:47–60 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Menahem Segal
    • 1
  • Norton W. Milgram
    • 1
  1. 1.Center for Neurosciences and Behavioral ResearchWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations