Skip to main content

Dysfunction of Central Cholinergic System in Hyperkinetic Rats, Following Postnatal Anoxia

  • Chapter
Alzheimer’s and Parkinson’s Disease

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 29))

Abstract

Rats exposed during the first 24 hours following birth to 100% nitrogen for 25 minutes, demonstrated increased motor activity in the open field between 10–40 days of age (1). At maturity, however, they still displayed deficits in 6-choice discrimination learning (2). Biochemical studies of the brain revealed an increase in the density of muscarinic cholinergic receptors in the hippocampus, which appeared early in life and before any changes in other brain receptors tested could be detected (dopaminergic in caudate and 3 adrenergic in hippocampus). The increased [3H] QNB binding in the hippocampus, demonstrated already at six days of life, reached peak values at 15–20 days, then decreased towards normal values at 40 days of life (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Speiser, A.D. Korczyn, I. Teplitzky and S. Gitter, Hyperactivity in rats following postnatal anoxia, Beh. Brain Res. 7: 379 (1983).

    Article  CAS  Google Scholar 

  2. M. Hershkowitz, V.E. Grimm and Z. Speiser, The effects of postnatal anoxia on behavior and on the muscarinic and beta adrenergic receptors in the hippocampus of the developing rat, Develop. Brain- Res. 7: 147 (1983).

    Article  CAS  Google Scholar 

  3. G.E. Gibson and J.P. Blass, Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia, J. Neurochem. 27: 37 (1976).

    Article  PubMed  CAS  Google Scholar 

  4. G.E. Gibson and T.E. Duffy, Impaired synthesis of acetylcholine by mild hypoxic hypoxia or nitrous oxide, J. Neurochem. 36: 28 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. R.W. Russell, Cholinergic system in behavior: The search for mechanisms of action, Ann. Rev. Pharmacol. Toxicol. 22: 435 (1982).

    Article  CAS  Google Scholar 

  6. B.A. Campbell, L.D. Lyttle and H.C. Fibiger, Ontogeny of adrenergic arousal and cholinergic inhibitory mechanisms in the rat, Science 146: 635 (1969).

    Article  Google Scholar 

  7. J. Altman, R.I. Brunner and S.A. Bayer, The hippocampus and behavioral maturation, Behav. Biol. 8: 557 (1973).

    Article  PubMed  CAS  Google Scholar 

  8. D.M. Warburton and K. Brown, The facilitation of discrimination performance by physostigmine sulphate, Psychopharmacologia 27: 275 (1972).

    Article  PubMed  CAS  Google Scholar 

  9. P.D. Mabry and B.A. Campbell, Serotonergic inhibition of catecholamine induced behavioral arousal, Brain Res. 49: 381 (1973).

    Article  PubMed  CAS  Google Scholar 

  10. H.C. Fibiger, L.D. Lyttle and B.A. Campbell, Cholinergic modulation of adrenergic arousal in the developing rat, J. Comp. Physiol. Phychol. 72: 384 (1970).

    Article  CAS  Google Scholar 

  11. B.A. Campbell and P.D. Mabry, The role of catecholamines in the behavioral arousal during ontogenesis, Psychopharmacologia 31: 253 (1973).

    Article  PubMed  CAS  Google Scholar 

  12. W.H, Moorcraft, Ontogeny of forebrain inhibition of behavioral arousal, Brain Res. 35: 513 (1971).

    Article  Google Scholar 

  13. S.T. Mason and H.C. Fibiger, Interaction between noradrenergic and cholinergic systems in the rat brain: Behavioral function in locomotor activity, Neurosciencei 4: 517 (1979).

    Article  CAS  Google Scholar 

  14. S.T. Mason, Pilocarpine: Noradrenergic mechanism of a cholinergic drug, Neuropharmacology 17: 105 (1978).

    Article  Google Scholar 

  15. R.N. Leaton and R.H. Rech, Locomotor activity increases produced by intrahippocampal and intraseptal atropine in rats, Physiol. Behav. 8: 539 (1972).

    Article  PubMed  CAS  Google Scholar 

  16. S.L. Hartgrave and P.H. Kelly, Role of mesencephalic reticular formation in cholinergic-induced catalepsy and anticholinergic reversal of neuroleptic induced catalepsy, Brain Res. 307: 47 (1984).

    Article  Google Scholar 

  17. G.N.O. Brito, J.B. Davis, L.C. Stopp and M.E. Stanton, Memory and the septo-hippocampal cholinergic system in the rat, Psychopharmacology 81: 315 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. D. Blozovski and N. Hennocq, Effects of antimuscarinic cholinergic drugs injected systemically or into the hippocampus-entorhinal area upon passive avoidance learning in young rats, Psychopharma-cology 76: 351 (1982).

    Article  CAS  Google Scholar 

  19. C.M. Baratti, P. Huygens, J. Mino, A. Mario and J. Gardella, Memory facilitator with posttrial injection of oxotremorine and physo- stigmine in mice, Psychopharmacology; 64: 85 (1979).

    Article  PubMed  CAS  Google Scholar 

  20. A.C. Cuello and M.V. Sofroniew, The anatomy of the CNS cholinergic neurons, TINS 7: 74 (1984).

    CAS  Google Scholar 

  21. B.T. Hyman, G.W. Van Hoesen, A.R. Damasio and C.L. Barnes, Alzheimer’s Disease: Cell-specific pathology isolates the hippocampal formation, Science 225: 1168 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. D. Kimble, The effect of bilateral hippocampal lesions, J. Comp. Physiol. Psychol. 56: 27. 3 (1963).

    Google Scholar 

  23. G.S. Lynch, G. Rose and C.M. Gall, Anatomical aspects of the septo- hippocampal projections in functions of the septo-hippocampal system, Elsevier Exerpta Medica, Holland, (1978).

    Google Scholar 

  24. L.W. Swanson, The anatomical organization of septo-hippocampal formation (with a note on the connections to septum and hypothalamus) in functions of septo-hippocampal systems, Elsevier Exerpta Medica, Holland, (1978).

    Google Scholar 

  25. L.W. Swanson and M.W. Cowan, Hippocampo-hypothalamic connections: Origin in subicular cortex not Ammons’s Horn, Science 189: 303 (1975).

    Article  PubMed  CAS  Google Scholar 

  26. J.F. De France, J.E. Marchand, J.C. Stanley and R.W. Silzes, Conver gence of excitatory amygdaloid and hippocampal input in the nucleus accumbens, Septi, Brain Res. 185: 183 (1980).

    Article  Google Scholar 

  27. J.F. De France, M. Yoshikara, Fimbria input to the nucleus accumbens, Septi. Brain Res. 90: 159 (1975).

    Article  Google Scholar 

  28. C. Kim, H. Choi, J.K. Kim, R.S. Park and I.Y. Kang, General behavioral activity and its component patterns in hippocampectomized rats, Brain Res. 19: 379 (1970).

    Article  PubMed  CAS  Google Scholar 

  29. D.P. Kimble, The effect of bilateral hippocampal lesion in rats, J. Comp. Physiol. Psychol. 56: 273 (1963).

    Article  PubMed  CAS  Google Scholar 

  30. C.B. Sengstake, Habituation and activity patterns of rats with large hippocampal lesions under various drive conditions, J. Comp. Physiol. Psychol. 65: 504 (1968).

    Article  PubMed  CAS  Google Scholar 

  31. L.E. Jarrard, Behavior of hippocampal lesioned rats in home cage and novel situation, Physiol. Behav. 3: 65 (1968).

    Article  Google Scholar 

  32. P.N. Strong and W.Y. Jackson, Effect of hippocampal lesions in rats on three measures of activity, J. of Compar. Physiolog. Psychol. 70: 60 (1975).

    Article  Google Scholar 

  33. B.A. Campbell, P. Ballantine and G. Lynch, Hippocampal control of behavior arousal: Duration of lesion effects and possible interactions with recovery after frontal cortical damage, Exp. Neurol. 33: 159 (1971).

    Article  PubMed  CAS  Google Scholar 

  34. R.W. Russell and J. Macri, Central cholinergic involvement in be havioral hyperreactivity, Pharmacol. Biochem. Behav. 10: 43 (1979).

    Article  PubMed  CAS  Google Scholar 

  35. F. F. Fonnum, A rapid radiochemical method for the determination of choline acetyltransferase, J. Neurochemistry 24: 407 (1975).

    Article  CAS  Google Scholar 

  36. J.V. Nadler, D.A. Mathews, C.W. Cotman and G.S. Lynch, Development of cholinergic innervation in the hippocampal formation of the rat, Develop. Biol. 36: 142 (1974).

    Article  PubMed  CAS  Google Scholar 

  37. M.J. Kuhar, N.J.M. Birdsall, A.S.V. Burgen and E.C. Hullme, Ontogeny of muscarinic receptors in rat brain, Brain Res. 184: 375 (1980).

    Article  PubMed  CAS  Google Scholar 

  38. J.T. Coyle and H.I. Yamamura, Neurochemical aspects of the ontogenesis of cholinergic neurons in the rat brain, Brain Res. 118: 429 (1976).

    Article  PubMed  CAS  Google Scholar 

  39. H. I. Yamamura and S.H. Snyder, High affinity uptake of choline into synaptosomes of rat brain, J. Neurochem. 21: 1355 (1973).

    Article  PubMed  CAS  Google Scholar 

  40. M.J. Kuhar and L.Ch. Murrin, Sodium dependent high affinity choline uptake, J. Neurochem. 30: 15 (1978).

    Article  PubMed  CAS  Google Scholar 

  41. S. Atweh, J.R. Simon and M.J. Kuhar, Utilization of sodium dependent high affinity choline uptake in vitro as a measure of the activity of cholinergic neurons in vitro, Life Sci. 17: 1535 (1975).

    Article  PubMed  CAS  Google Scholar 

  42. D.R. Haubrich and Th.J. Chippendale, Regulation of acetylcholine synthesis in nervous tissue, Life Sci. 20: 1465 (1977).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Speiser, Z., Sharafan, C., Gitter, S., Cohen, S., Gonen, B., Rehavi, M. (1986). Dysfunction of Central Cholinergic System in Hyperkinetic Rats, Following Postnatal Anoxia. In: Fisher, A., Hanin, I., Lachman, C. (eds) Alzheimer’s and Parkinson’s Disease. Advances in Behavioral Biology, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2179-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2179-8_55

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9283-8

  • Online ISBN: 978-1-4613-2179-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics