Down’s Syndrome and Alzheimer’s Disease: Are Common Genes From Human Chromosome 21 Involved In Both Disorders?

  • Y. Groner
  • N. Dafni
  • L. Sherman
  • D. Levanon
  • Y. Bernstein
  • E. Danciger
  • O. Elroy-Stein
  • A. Neer
Part of the Advances in Behavioral Biology book series (ABBI, volume 29)


Why do most victims of Down’s syndrome (D.S.) develop Alzheimer’s dementia (A.D.) in middle age? The intriguing links between D.S, an inborn chromosomal disorder, and A.D, a condition that develops late in life in individuals with no obvious genetic abnormality were recognized many years ago. Nevertheless, the actual metabolic faults underlying both these conditions are still unknown (1–3).


Down Syndrome Human Chromosome Gene Dosage Effect Partial Trisomy Unsaturated Fatty Acid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Katzman, ed., ijfi: “Biological Aspects of Alzheimers Disease” Banbury Report No. 15, Cold Spring Harbor Laboratory, New York (1983).Google Scholar
  2. 2.
    F.M. Sinex and C.R. Merrill,eds., “Alzheimer’s Disease, Down’s Syndrome and Aging” New York Academy of Sciences, New York (1982).Google Scholar
  3. 3.
    R.J. Wartman, m: “Alzheimer’s Disease” Scientific American 252: 48–56 (1985).Google Scholar
  4. 4.
    J.M. Lejeune, M. Gautier, and R. Turpin, Etudes des chromosomes somatiques de neuf enfants mongoliens, Compt.Rend.Acad.Sci. 248: 1721–1722 (1959).Google Scholar
  5. 5.
    G.M. Martin, Genetic syndromes in man with potential relevance to the pathology of aging, Birth Defects Prig. Article Series XIV (1) 5–39 (1978).Google Scholar
  6. 6.
    G.R., Burgio, M. Fraccaro, L. Tiepolo, and U. Wolf, eds., Trisomy 21 Springer-Berlin, (1981).Google Scholar
  7. 7.
    F.F. de la Cruz, and P.S. Gerald, eds.. Trisomy 21 ( Down Syndrome) Research Perspective. University Park Press, Baltimore (1981).Google Scholar
  8. 8.
    G,A. Jervis, Early senile dementia in mongoloid idiocy. Am. J. Psy chiatry. 105: 102–106 (1948).Google Scholar
  9. 9.
    P.C. Burger, and F.S. Vogel, The development of the pathologic changes of Alzheimer’s disease and senile dementia in patients with Down’s syndrome. Am. J. Pathol. 73: 457–476 (1973).PubMedGoogle Scholar
  10. 10.
    W.G. Ellis, J.R. McCullogh, and C.L. Corley, Presenile dementia in Down’s syndrome: Ultrastructural identity with Alzheimer’s disease. Neurology 24: 101–106 (1974).PubMedGoogle Scholar
  11. 11.
    W.M. Hooper, and F.S. Vogel, The limbic system in Alzheimer’s disease: Neuropathological investigation. Am. J. Pathol. 85: 1–13 (1976).Google Scholar
  12. 12.
    A.H. Ropper, and R.S. Williams, Relationship between plaques, tangles, and dementia in Down syndrome. Neurology 30: 639–644 (1980).PubMedGoogle Scholar
  13. 13.
    G. Solitare, and J. Lamarche, Alzheimer’s disease and senile dementia as seen in mongoloids: Neuropathological observations. Am. J. Ment. Dis. 70: 840–848 (1966).Google Scholar
  14. 14.
    D.R., Crapper, A.J. Dalton, M. Skopitz, P. Eng, J.H. Scott, and V. Hachimski, Alzheimer degeneration in Down’s syndrome. Electrophysiological alterations and histopathologic findings* Arch. Neurol. 32: 618–623 (1975).Google Scholar
  15. 15.
    C.J. Epstein, Down’s syndrome and Alzheimer’s disease: Implications and approaches, in: “Biological Aspects of Alzheimer’s Disease”, R. Katzman, Cold Spring Harbor Laboratory, N.Y. 169–182 (1983).Google Scholar
  16. 16.
    S. Sorbi, and J.P. Blass, Fibroblast phosphofructokinase, “Alzheimer’s disease and Down’s Syndrome” ibid p. 297–305, (1983).Google Scholar
  17. 17.
    G.G. Glenner, and C.W. Wong. Alzheimer’s disease and Down’s syndrome sharing a unique cerebrovascular amyloid fiber protein, Biochem. Biophys Res. Comm. 122: 1131–1135 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    J.F. Mattei, M.G. Mattei, S. Aymes, and F. Giraud, Origin of the extra chromosome in trisomy 21, Hum Genet. 46: 107–110 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    E. Niebuhr, Down’s syndrome. The possibility of a pathogenic segment on chromosome 21, Hum. Genet. 21: 99–100 (1974).CrossRefGoogle Scholar
  20. 20.
    J.D. Williams, R.L. Suininit, P.R. Martens, and R.A. Kimbrell, Familial Down’s syndrome is due to t(10,21) translocation: evidence that the Down’s syndrome phenotype is related to trisomy of a specific segment of chromosome 21, Am. J. Hum. Genet. 27: 478–481 (1975).PubMedGoogle Scholar
  21. 21.
    J. Cervenka, R.J. Gorlin, and G.R. Djavadi, Down’s syndrome due to partial trisomy 21q. Clin. Genet. 11: 119–121 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    R.A. Pfeiffer, E.K. Kessel, and K.H. Soer, Partial trisomies of chromosome 21 in man. New observations due to translocations 19:21 and 4:21, Clin. Genet. 11: 207–213 (1977).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Poissonier, B. St. Paul, B. Dutrillaux, M. Chassegne, M. Gruyer, and G. Bligniers,-Strouk, Trisomy 21 partiello (21q21 to 21q22.2), Ann. Genet. 19: 69–73 (1976).Google Scholar
  24. 24.
    P.M. Sinet, J. Coutourier, B. Dutrillaux, M. Poissonier, 0. Raoul, M.O. Rethore, D. Allard, J. Lejeune, and H. Jerome, Trisomic 21 et superoxide dismutase, tentative de localisation sur la sous bande 21q21.1, Exp. Cell Res. 97: 47–55 (1976).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Hagemeijer, and E.M.E. Smith, Partial trisomy 21. Further evidence that trisomy of band 21q22 is essential for Down’s phenotype. Hum. Genet. 38: 15–23 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    T. Philip, J. Fraisse, P.-M. Sinet, B. Lauras, J.M. Roberts, and F. Freycon, Confirmation of the assignment of the human SOD gene to chromosome 21q22, Cytogenet, Cell Genet. 22: 521–523 (1978).CrossRefGoogle Scholar
  27. 27.
    R.L. Summitt,Chromosome 21 specific segments that cause the phenotype of Down syndrome, in: Trisomy 21 ( Down Syndrome) Research Perspectives, F.F. de la Cruz andTP.S. Gerald, eds. University Park Press, (1981).Google Scholar
  28. 28.
    L.L. Heston, Dementia of the Alzheimer type: A perspective from family studies, iji: “Biological Aspects of Alzeheimer’s Disease”,R. Katzman, ed.. Cold Spring Harbor Laboratory p 183–191, N.Y. (1983).Google Scholar
  29. 29.
    H.E. Varmus, The Molecular Genetics of Cellular Oncogenes, Ann. Rev. Genet. 18: 553–612 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    H.J. Evans, R.A. Buckland, and M.L. Pardue, Location of the genes coding for 18S and 28S ribosomal RNA in the human genome, Chromosome 48: 405–426 (1974).CrossRefGoogle Scholar
  31. 31.
    R.D. Schmickel, and M. Knoller, Characterization and localization of the human genes for ribosomal ribonucleic acid, Pediat. Res. 11: 929–935 (1977).PubMedGoogle Scholar
  32. 32.
    Y.H. Tan, J. Tischfield, and F.H. Ruddle, The linkage of genes for the human interferon-induced antiviral protein and inophenol oxidase-B traits to human chromosome G-21, J. Exp. Med. 137: 317–330 (1973).PubMedCrossRefGoogle Scholar
  33. 33.
    E.E. Moore, C. Jones, F.-T. Kao, and D.C. Gates, Synteny between gly- cinamide ribonucleotide synthetase and superoxide dismutase (soluble), Am. J. Hum. Genet. 29: 389–396 (1977).PubMedGoogle Scholar
  34. 34.
    D. Patterson, S. Graw, and C. Jones, Demonstration, by somatic cell genetics, of coordinate regulation of genes for two enzymes of purine synthesis assigned to human chromosome 21, Proc.Natl.Acad. Sci. USA 78: 405–409 (1981).CrossRefGoogle Scholar
  35. 35.
    S. Vora, and U. Franke, Assignment of the human gene for liver-type-6- phosphofructokinase isozyme (PFKL) to chromosome 21 by using somatic cell hybrids and monoclonal anti-L antibody, Proc.Natl.Acad.Sci. USA 78: 3738–3742 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    F. sTy, N. Krassikoff, and U. Franke, Assignment of the gene for cystathionine 3-synthase to human chromosome 21 in somatic cell hybrids, Hum. Genet. 65: 291–294 (1984).CrossRefGoogle Scholar
  37. 37.
    P. Garber, P.-M. Sinet, H. Jerome, and J. Lejeune, Copper/zinc SOD activity in trisomy 21 by translocation. Lancet ii: 914–918 (1979).Google Scholar
  38. 38.
    J.M. Emberger, R. Lloret, and D. Rossi, Trisomic 21 partielle a 45 chromosomes par translocation de deux 21 sur le 14: 45,XX,-14,-21+t (14q21q21q), Ann. Genet. 23: 179–180 (1980).PubMedGoogle Scholar
  39. 39.
    N. Crosti, A. Rigo, R. Stevanato, J. Bajer, G. Neri, R. Bova, and A.Serra, Lack of position effect on the activity of SOD/ Cu/Zn gene in subjects with 21/D and 21/G Robertsonian translocation Hum.Genet. 57: 203–204 (1981).PubMedCrossRefGoogle Scholar
  40. 40.
    A. Jeziorowska, L. Jakubowski, A. Armatys, and B. Kaluzewski, Copper/ zinc superoxide disrautase (SOD-1) activity in regular trisomy 21, trisomy 21 by translocation and mosaic trisomy 21, Clin. Gen. 22: 160–164 (1982).CrossRefGoogle Scholar
  41. 41.
    L.B. Epstein, and C.J. Epstein, Localization of the gene AVG for the antiviral expression of immune and classi cal interferon to the distal part of the long arm of chromosome 21, J. Infect. Pis. (Suppl.) 133: A56–A62 (1976).Google Scholar
  42. 42.
    D.R. Cox, H. Kawashima, S. Vora, and C.J. Epstein, Regional mapping of SOD-1 PRCS and PFK-L on human chromosome 21: implications for the role of these genes in the pathogenesis of Down Syndrome, Am. J. Hum. Genet. 35: 118A (1983).Google Scholar
  43. 43.
    B. Chadefaux, D. Allard, M.O. Rethore, 0. Raoul, M. Poissonier, S. Gilgenkrantz, C. Cheruy, and H. Jerome, Assignment of human phos- phoribosylglycinamide synthetase locus to region 21q22.1, Hum. Genet. 66: 190–192 (1984).PubMedCrossRefGoogle Scholar
  44. 44.
    S. Sichitiu, P.-M. Sinet, J. Lejeune, and J. Frezal, Surdosage de la forme dimerique de 1’indophenoloxydase dans las trisomie 21, secondaire au surdosage genique. Hum. Genet. 23: 65–72 (1974).CrossRefGoogle Scholar
  45. 45.
    P.-M. Sinet, D. Allard, J. Lejeune, and H. Jerome, Augmentation d’ activité de la superoxyde dismutase erythrocytaire dans la trisomie pour le chromosome 21, C.R. Acad. Sci (Paris) 278: 3267–3270 (1974).Google Scholar
  46. 46.
    A.W. Erikson, R.F. Frants, and P.H. Jongbloet, Quantitative immuno logical studies on cytoplasmic, superoxide dismutase: High concentration in red cells of Down syndrome, Abstr. Amer. J. Hum. Genet. 27: 33A (1975).Google Scholar
  47. 47.
    P. Benson, Gene dosage effect in trisomy 21, Lancet ii: 584 (1975).Google Scholar
  48. 48.
    R.R. Frants, A.W. Eriksson, P.H. Jongbloet, and H.J. Hamers, Superoxide dismutase in Down syndrome. Lancet ii: 42–43 (1975).Google Scholar
  49. 49.
    N. Crosti,A. Serra, A. Rigo, and P. Viglino, Dosage effect of SOD-A gene in trisomy 21 cells. Hum. Genet. 31: 197–203 (1976).CrossRefGoogle Scholar
  50. 50.
    A.D. Tamarkina, G.A. Annenkov, I.K. Filippoy, and T. Lamchingin, Dosage effect of cytoplasmic SOD-1 gene in the erythrocytes of patients with Down’s syndrome, Genetika 13: 929–932 (1977).PubMedGoogle Scholar
  51. 51.
    W.W. Feaster, L.W. Kwok, and C.J. Epstein, Dosage effects for superoxide dismutase-1 in nucleated cells aneuploid for chromosome 21, Am. J. Hum. Genet. 29: 563–570 (1977).PubMedGoogle Scholar
  52. 52.
    Y. Yamamoto, N. Ogasawara, A. Gotoh, H. Komiya, H. Nakai, and Y. Kuroki, A case of 21q-syndrome with normal SOD-1 activity. Hum. Genet. 48: 321–327 (1979).PubMedCrossRefGoogle Scholar
  53. 53.
    J.M. Berg, H.A. Gardner, R.J.M. Gardner, E.G. Goh, V.D. Markovic, N.E. Simpson, and R.G. Worton, Dic(21;21) in a Down’s syndrome child with an unusual chromosome 9 variant in the mother, J. med. Genet. 17: 144–155 (1980).PubMedCrossRefGoogle Scholar
  54. 54.
    N.J. Leschot, R.M. Slater, H. Joenje, M.J. Becker-Bloemkolk, and J.J. de Nef, SOD-A and chromosome 21. Conflicting findings in a familial translocation (9p24;21q214), Hum. Genet. 57: 220–223 (1981).PubMedCrossRefGoogle Scholar
  55. 55.
    C.H. Scoggin, J. Bleskan, J.N. Davidson, and D. Patterson, Gene expression of glycinamide ribonucleotide synthetase in Down syndrome, Clin. Res. 28: 31A (1980).Google Scholar
  56. 56.
    J.A. Bartley, and C.J. Epstein, Gene dosage effect for glycinamide ribonucleotide synthetase in human fibroblasts trisomie for chromosome 21, Biochem. Biophys. Res. Commun. 93: 1286–1289 (1980).PubMedCrossRefGoogle Scholar
  57. 57.
    R.B. Layzer, and C.J. Epstein, Phosphofructokinase and chromosome 21, Am. J. Hum. Genet. 24: 533–543 (1972).PubMedGoogle Scholar
  58. 58.
    L.B. Epstein, S.H.S. Lee, and C.J. Epstein, Enhanced sensitivity of trisomy 21 monocytes to the maturation-inhibiting effects of interferon. Cell Immunol. 50: 191–194 (1980).PubMedCrossRefGoogle Scholar
  59. 59.
    B.S. Scott, L.E. Becker, and T.L. Petit, Neurobiology of Down’s syndrome Prog. Neurobiol. 21: 199–237 (1983).PubMedCrossRefGoogle Scholar
  60. 60.
    P.M. Sinet, J. Lejeune, and H. Jerome, Trisomy 21 (Down’s syndrome) glutathione peroxidase hexose monophosphate shunt and I.Q, Life Sci. 24: 29–34 (1979).PubMedCrossRefGoogle Scholar
  61. 61.
    P.M. Sinet, Metabolism of oxygen derivatives in Down’s syndrome in Alzheimer disease and aging, F.M. Sinex, and C.R. Merill, eds, Ann. New York Acad. Sci. 396: 83–94 (1982).Google Scholar
  62. 62.
    S.N. Pantelakis, A.G. Karaklis, D. Alexion, E. Vardas, and T. Valaes, Red cell enzymes in trisomy 21, Am. J. Hum. Genet. 22: 184–193 (1972).Google Scholar
  63. 63.
    H. Frischer, L.K. Chu, T. Ahmad, P. Justice, and G.F. Smith, Superoxide dismutase and glutathione peroxidase abnormalities in erythrocytes and lymphoid cells in Down’s syndrome, Progr. din, biol. Res., 55: 269–283 (1981).Google Scholar
  64. 64.
    J. Kedziora, R. Lukaszewicz, M. Koter, G. Bartosz, B. Pawlowska, and D. Aitkin, Red blood cell glutathione peroxidase in simple trisomy 21 and translocation 21/22, Experientia, 38: 543–544 (1982).PubMedCrossRefGoogle Scholar
  65. 65.
    P.M. Sinet, A.M. Michelson, A. Bazin, J. Lejeune, and H. Jerome, Increase in glutathione peroxidase activity in erythrocytes from trisomy 21 subjects, Biochem. biophys. Res.Commun, 67: 910–915 (1975).PubMedCrossRefGoogle Scholar
  66. 66.
    L.M.M. Wijnen, M. Monteba-Van Heusel, P.L. Pearson, and P.M. Khan, Assignment of a gene for glutathione peroxidase (GPXi) to human chromosome 3, Cytogenet. Cell Genet, 22: 232–235 (1978).CrossRefGoogle Scholar
  67. 67.
    B.L. Brooksbank, and R. Balazs, Superoxide dismutase, gluthathione peroxidase and lipoperoxidation in Down’s syndrome fetal brain, Devel. Brain Res., 16: 37–44 (1984).CrossRefGoogle Scholar
  68. 68.
    J.A. Bedweg, and M.L. Kamovsky, Active oxygen species and the functions of phagocytic leukocytes, Ann. Rev. Biochem., 49: 695–726 (1980).CrossRefGoogle Scholar
  69. 69.
    L.J. Mamett, Hydroperoxide-dependent oxidations during prostaglandin biosynthesis,: Free Radicals in Biology, W.A. Pryor, ed., VI p.64-90, Academic Press, N.Y. (1984).Google Scholar
  70. 70.
    S.N. Shah, Fatty acid composition of lipids of human brain myelin and synaptosomes: Changes in phenylketonuria and Down syndrome. Int. J. Biochem., 10: 477 - 482 (1979).PubMedCrossRefGoogle Scholar
  71. 71.
    E.E. McCoy, and L. Enns, Sodium transport quabain binding and (Na+/K+) ATPase activity in Down’s syndrome platelets, Pediat. Res., 12: 685–689 (1978).PubMedGoogle Scholar
  72. 72.
    B.S. Scott, T.L. Petit, L.E. Becker, and B.A.V. Edwards, Abnormal electric membrane properties of Down’s syndrome DRG neurons in cell culture, Devel. Brain. Res. 2: 257–270 (1982).CrossRefGoogle Scholar
  73. 73.
    S. Vora, L. Gorash, W.K. Engel, S. Durham, C. Seaman, and S. Piomelli, The molecular mechanism of the inherited phosphofructokinase deficiency associated with hemolysis and myopathy, Blood 55: 629–635 (1980).PubMedGoogle Scholar
  74. 74.
    S. Vora, C. Seaman, S. Durham, and S. Piomelli, Isozymes of human phos phofructokinase: Identification and subunit structural characterization of a new system, Proc.Natl.Acad.Sci. USA 77: 62–66 (1980).PubMedCrossRefGoogle Scholar
  75. 75.
    S. Vora, Isozymes of human phosphofructokinase in blood cells and cultured cell lines: Molecular and genetic evidence for a trigenic system. Blood 57: 724–731 (1981).PubMedGoogle Scholar
  76. 76.
    S. Vora, Isozyanes of phosphofructokinase, “Isozymes: Current Topics in Biological Medical Research”, M.C. Rattazzi, J.G. Scandalios, G.S. Whitt, eds.. New York, Alan R. Liss, Vol. 6, pp. 119–167 (1982).Google Scholar
  77. 77.
    S. Vora, Isozymes of human phosphofructokinase: Biochemical and genetic aspects. Isozymes:Curr. Top. Biol. Med. Res., 11: 3–24 (1983).PubMedGoogle Scholar
  78. 78.
    G.A. Dunaway, A review of animal phosphofructokinase isozymes with an emphasis on their physiological role, Molec. Cell. Biochem., 52: 75–91 (1983).PubMedCrossRefGoogle Scholar
  79. 79.
    M. Davidson, M. Collins, J. Byrne, and S. Vora, Alterations and phos phofructokinase isozymes during early human development, Biochem. J. 214: 703–710 (1983).PubMedGoogle Scholar
  80. 80.
    S. Vora, and U. Francke, Assignment of the human gene for liver-type 6- phosphofructokinase isozyme (PFKL) to chromosome 21 by using somatic cell hybrids and monoclonal anti-L antibody, Proc.Natl.Acad.Sci. USA 78: 3738–3742 (1981).PubMedCrossRefGoogle Scholar
  81. 81.
    D.M. Bowen, P. IVhite, J.A. Spillane, M.J. Goodhart, G. Curzon, P. Iwan-go£f, W. Meyer-Ruge, and A.M. Davison, Accelerated aging or selective neuronal loss as an important course of dementia. Lancet ii: 11–15, (1979).Google Scholar
  82. 82.
    J. Lieman-Hurwitz, N. Dafni, V. Lavie, and Y. Groner, Human cytoplasmic superoxide dismutase cDNA clone: A probe for studying the molecular biology of Down»s syndrome, Proc.Natl.Acad.Sci. USA 79: 2808–2811 (1982).PubMedCrossRefGoogle Scholar
  83. 83.
    L. Sherman, N. Dafni, J. Lieman-Hurwitz, and Y. Groner. Nucleotide sequence and expression of human chromosome 21-encoded superoxide dismutase mRNA, Proc.Natl.Acad.Sci. USA 80: 5465–5469 (1983).PubMedCrossRefGoogle Scholar
  84. 84.
    L. Sherman, D. Levanon, J. Lieman-Hurwitz, N. Dafni, and Y. Groner, Human Cu/Zn superoxide dismutase gene: Molecular characterization of its two mRNA species. Nucleic Acid Res., 12: 9349–9365 (1984).PubMedCrossRefGoogle Scholar
  85. 85.
    D. Levanon, J. Lieman-Hurwitz, N. Dafni, M. Wigderson, L. Sherman, Y. Bernstein, Z. Laver-Rudich, E. Danciger, O. Stein, and Y. Groner, Architecture and anatomy of the chromosomal locus in human chromosome 21 encoding the Cu/Zn superoxide dismutase, EMBO J, 4: 77–84 (1985).PubMedGoogle Scholar
  86. 86.
    Y. Groner, J. Lieman-Hurwitz, N. Dafni, L. Sherman, D. Levanon, Y. Bernstein, E. Danciger, and 0. Elroy-Stein, Molecular structure and expression of the gene locus on chromosome 21 encoding the Cu/Zn superoxide dismutase and its relevance to Down*s syndrome, Ann. New York Acad. Sci. In press.Google Scholar
  87. 87.
    R.C. Mulligan, and P. Berg, Expression of a bacterial gene in mammalian cells. Science 209: 1422–1427 (1980).PubMedCrossRefGoogle Scholar
  88. 88.
    P.J. Southern, and P. Berg. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter, J. Molec. App. Genet. 1: 327–341 (1982).Google Scholar
  89. 89.
    Y.W. Kan, and A.M. Dozy, Polymorphism of DNA sequence adjacent to the human 3-globin structural gene: Relationship to sickle cell mutation, Proc.Natl.Acad.Sci. USA 75: 5631–5635 (1978).PubMedCrossRefGoogle Scholar
  90. 90.
    D. Botstein, R.L. White, M. Skolnick, and R.W. Davis, Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Amer. J. Hum. Genet. 32: 314–331 (1980).PubMedGoogle Scholar
  91. 91.
    J.D. McSwigan, D.R. Hanson, A. Lubiniecki, L.L. Heston, and J.R. Sheppard, Down syndrome fibroblasts are hyper-responsive to 3-adrenergic stimulation, Proc.Natl.Acad.Sci. USA 78: 7670–7673 (1981).PubMedCrossRefGoogle Scholar
  92. 92.
    T.C. Wright, R.W. Orkin, M. Destrempes, and D.M. Kumit, Increased adhesiveness of Down syndrome fetal fibroblasts in vitro, Proc.Natl. Acad.Sci. USA 81: 2426–2430 (1984).PubMedCrossRefGoogle Scholar
  93. 93.
    F. Naeim, and R.L. Walford, Disturbances of redistribution of surface membrane receptors on peripheral mononuclear cells of patients with D.S. and of aged individuals, J. Gerontology 35: 650–655 (1980).Google Scholar
  94. 94.
    E.L. Schneider, and C.J. Epstein, Replication rate and lifespan of cultured fibroblasts in Down’s syndrome, Proc.She.Exp.Biol. Med., 141: 1092–1094 (1972).Google Scholar
  95. 95.
    D.J. Segal, and E.E. McCoy, Studies on Down’s syndrome in tissue culture, J. Cell. Physiol. 83: 85–90 (1974).PubMedCrossRefGoogle Scholar
  96. 96.
    J. Boue, C. Deluchat, H. Nicolas, and A. Boue, Prenatal losses of trisomy 21, Trisomy 21, G.R. Burgio, H. Fraccaro, L. Tiepolo, and U. Wolf, eds, pp. 183-193, Springer-Verlag, New York (1981).Google Scholar
  97. 97.
    J.G. Izant, and H. Weintraub, Inhibition of thymidine kinase gene expression by antisense RNA: A molecular approach to genetic analysis. Cell 36: 1007–1015 (1984).PubMedCrossRefGoogle Scholar
  98. 98.
    T. Mizuno, M.Y. Chou, and M. Inouye, A unique mechanism regulating gene expression: Translational inhibition by a complementary RNA transcript (mic RNA), Proc.Natl.Acad.Sci. USA 81: 1966–1970 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Y. Groner
    • 1
  • N. Dafni
    • 1
  • L. Sherman
    • 1
  • D. Levanon
    • 1
  • Y. Bernstein
    • 1
  • E. Danciger
    • 1
  • O. Elroy-Stein
    • 1
  • A. Neer
    • 1
  1. 1.Department of VirologyThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations