Skip to main content

Brain Iron and Dopamine D2 Receptors in the Rat

  • Chapter
Alzheimer’s and Parkinson’s Disease

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 29))

  • 141 Accesses

Abstract

Iron deficiency (ID), the most prevalent nutritional disorder in the world (1,2), is characterized by haematological changes and stunted growth (3). In man, ID causes behavioural alterations which include pica eating, low I.Q. and reduction in attention, learning capacity and cognition, sleep disturbances and EEC changes (4–9). In rats made iron deficient the behavioural changes include significant reduction in maze learning ability, in responsiveness to environmental stimuli and learned task performance (10,11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Garby, Iron deficiency: definition and prevalence, “Clinics in Haematology,” S. T. Collender, ed., W. B. Saunders, London (1973).

    Google Scholar 

  2. Nutrition Canada, Nutrition Canada National Survey, Canadian Department of National Health and Welfare, Publ. No. H-58-36 (1973).

    Google Scholar 

  3. A. Jacobs and M. Worwood, eds., “Iron in Biochemistry and Medicine,” Academic Press, London (1974).

    Google Scholar 

  4. R. L. Leibel, D. B. Greenfield and E. Pollitt, Iron deficiency: behaviour and brain biochemistry, “Iron Deficiency Brain Biochemistry and Behaviour,” E. Pollitt and R. L. Leibel, eds. Raven Press, New York (1982).

    Google Scholar 

  5. P. R. Dallman, E. Beutler and C. A. Finch, Effect of iron deficiency exclusive of anaemia, J. Haematol., 40: 179 (1978).

    Article  CAS  Google Scholar 

  6. E. Pollitt and R. L. Leibel, Iron deficiency and behaviour, J. Pediatr., 88: 372 (1976).

    Article  PubMed  CAS  Google Scholar 

  7. F. A. Oski and A. M. Honig, The effect of therapy on the developmental scores of iron deficient infants, J. Pediatr., 92: 21 (1977).

    Google Scholar 

  8. T. E. Webb and F. A. Oski, Iron deficiency anemia and scholastic achieve ment, behavioural stability and perceptual sensitivity of adolescents, J. Pediatr., 82: 827 (1973a).

    Article  PubMed  CAS  Google Scholar 

  9. D. M. Tucker, H. H. Sandstead, J. G. Penland, S. L. Dawson and D. B. Milne, Iron status and brain function: serum ferritin levels associated with asymmetries of cortical electrophysiology and cognitive performance, M. J. Clin. Nutr., 39: 105 (1984).

    CAS  Google Scholar 

  10. J. Weinberg, S. Levine and P. R. Dallman, Long term consequences of early iron deficiency in the rat, Pharmacol. Biochem. and Behaviour, 11: 631 (1979).

    Article  CAS  Google Scholar 

  11. J. Weinberg, P. R. Dallman and S. Levine, Iron deficiency during early development in the rat. Behavioural and physiological consequences, Pharmacol. Biochem. and Behaviour, 12: 493 (1980).

    Article  CAS  Google Scholar 

  12. R. Ashkenazi, D. Ben-Shachar and M. B. H. Youdim, Nutritonal iron and dopamine binding sites in the rat brain, Pharmacol. Biochem. and Behaviour 17 (Suppl. 1) 43 (1982).

    Article  CAS  Google Scholar 

  13. M. B. H. Youdim, D. Ben-Shachar, R. Ashkenazi and S. Yehuda, Brain iron and dopamine receptor function, “CNS Receptors - From Molecular Pharmacol to Behaviour,” P. Mandel and F. V. De Feudis, eds.. Raven Press, New York (1983).

    Google Scholar 

  14. M. B. H. Youdim and A. R. Green, Biogenic monoamine metabolism and functional activity in iron deficient rats: behavioural correlates, in: “Iron Metabolism,” Ciba Symposium No. 51, Elsevier, Amsterdam (1977).

    Google Scholar 

  15. M. B. H. Youdim and D. Ben-Shachar, Brain iron and dopamine receptors function, Proc., 43: 4973 (1984).

    Google Scholar 

  16. P. R. Dallman, M. A. Siimes and E. C. Manies, Brain iron persistent deficiency following short-term iron deprivation in the young rat, Br. J. Haematol., 31: 209 (1975).

    Article  PubMed  CAS  Google Scholar 

  17. T. Amit, R. J. Barkey, D. Ben-Shachar and M. B. H. Youdim, Characteriz ation of hepatic prolactin receptors induced by chronic iron deficiency and neuroleptics, Eur. J. Pharmacol., (1985) submitted.

    Google Scholar 

  18. R. J. Barkey, D. Ben-Shachar, T. Amit and M. B.H. Youdim, Increased hepatic and reduced prostatic prolactin binding in iron deficiency and neuroleptic treatment: correlation with changes in serum prolactin and testosterone, Eur. J. Pharmacol., 109: 193 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. M. B. H. Youdim, S. Yehuda and A. Ben-Uriah, Iron-deficiency induced circadian rhythm reversal of dopaminergic-mediated behaviours and thermoregulation in rats, Eur. J. Pharmacol., 74:295 (l98l).

    Google Scholar 

  20. J. M. Hill and R. C. Switzer, The regional distribution and cellular localization of iron in the rat brain, Neurosci. 11: 595 (1984).

    Article  CAS  Google Scholar 

  21. M. Quick and L. L. Iversen, Regional study of H-spiroperidol binding and DA-sensitive adnylate cyclase in the rat brain, Eur. J. Pharmacol., 56: 323 (1979).

    Article  Google Scholar 

  22. J. C. Csernansky, C. A. Holman, K. A, Bonnet, K. Grabowsky, R. King and L. E. Hollister, Dopaminergic supersensitivity at distant sites following induced epileptic foci. Life Sci., 32: 385 (1983).

    CAS  Google Scholar 

  23. J. M. C. Gutteridge and B. Halliwell, The role of superoxide and hydroxyl radicals in the degradation of DNA and deoxyribose induced by copper phenanthroline complex, Biochem. Pharmacol., 31: 2801 (1982).

    Article  PubMed  CAS  Google Scholar 

  24. S. P. Markey, J. N. Johannessen, C. C, Chiueh, R. S. Burns and M. A. Herkenham, Intraneuronal generation of a pyridinium metabolite may cause drug induced Parkinsonism, Nature, 311: 464 (1984).

    Article  PubMed  CAS  Google Scholar 

  25. O. Hornykiewicz, Dopamine in the basal ganglia: its role and therapeutic implications, Brit. Med. Bull., 29: 172 (1973).

    Google Scholar 

  26. R. E. Heikkila, L. Manzino, F. S. Cabbat and R. C. Duvoisin, Protection against the dopaminergic neurotoxicity of 1-methyl l-4-phenyl-l,2,5,6- tetrahydropyridine by monoamine oxidase inhibitors. Nature, 311: 467 (1984).

    Article  PubMed  CAS  Google Scholar 

  27. R. E. Heikkila, L. Manzino, F. S. Cabbat and R. C. Duvoisin, Protection against the dopaminergic neurotoxicity of 1-methyl l-4-phenyl-l,2,5,6- tetrahydropyridine by monoamine oxidase inhibitors. Nature, 311: 467 (1984).

    Article  PubMed  CAS  Google Scholar 

  28. R. J. Cantwell, The long term neurological sequelae of anemia in infancy, Pediatr. Res., 8: 342 (1974).

    Article  Google Scholar 

  29. M. B. H. Youdim, Brain iron metabolism: biochemical and behaviouralaspects in relation to dopaminergic neurotransmission, “Handbook of Neurochemistry,”Vol. 10, New Series, A. Lajath, ed. Plenum Press, New York (1985).

    Google Scholar 

  30. See Kopin et al. this volume.

    Google Scholar 

  31. See Youdim et al. this volume.

    Google Scholar 

  32. B. Halliwell and J. M. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem., 219: 1 (1984).

    CAS  Google Scholar 

  33. T. F. Slater, Free radical mechanisms in tissue injury, Biochem., 222: 1 (1985).

    Google Scholar 

  34. J. Hallervorden and H. Spatz, Eigenartige Erkrankung im extrapyramidalen system mit besonderer beliligung des globus pallidus den substantia nigra, Z. Neurol. Psychiat., 79: 254 (1922).

    Article  Google Scholar 

  35. J. Szanto and F. Gallyas,A study of iron metabolism in neuropsychiatric patients. Hallervorden-Spatz disease. Arch. Neurol., 14: 438 (1966).

    PubMed  CAS  Google Scholar 

  36. J. M. Wigboldus and G. W. Bruyn, Hallervorden-Spatz disease, in:“Handbook of Clinical Neurology”, P. J. Vinken and G. W. Bruyn, eds.. North Holland, Amsterdam (1969).

    Google Scholar 

  37. C. Kessler, K. Schwechheimer, R. Reuther and J. A. Born, Hallervorden- Spatz syndrome restricted to the pallidal nuclei, J. Neurol., 231: 112 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Ben-Shachar, D., Youdim, M.B.H. (1986). Brain Iron and Dopamine D2 Receptors in the Rat. In: Fisher, A., Hanin, I., Lachman, C. (eds) Alzheimer’s and Parkinson’s Disease. Advances in Behavioral Biology, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2179-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2179-8_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9283-8

  • Online ISBN: 978-1-4613-2179-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics