Diagnostic Methods in Alzheimer’s Disease: Magnetic Resonance Brain Imaging and CSF Neurotransmitter Markers

  • John H. Growdon
  • Suzanne Corkin
  • Ferdinando Buonanno
  • Kenneth Davis
  • F. Jacob Huff
  • M. Flint Beal
  • Carl Kramer
Part of the Advances in Behavioral Biology book series (ABBI, volume 29)


The clinical diagnosis of Alzheimer’s disease (AD) depends upon a history of progressive cognitive impairments, lack of focal neurological signs, and laboratory tests that exclude other known causes of dementia (1,2). A definitive diagnosis of AD depends upon characteristic histopathological features, including abundant senile plaques and neurofibrillary tangles in the cortical neuropil (3,4). Other anatomical features include decreased numbers of neurons in the nucleus basalis of Meynert (5), the brain stem nucleus locus coeruleus (6,7), and the frontal and temporal cortices (8). Frequent neurochemical correlates of AD are decreased choline acetyltransferase (CAT), acetylcholinesterase (AChE), glutamic acid decarboxylase (GAD), and butyrylcholinesterase (BuChE) activities, and decreased somatostatin, norepinephrine, and serotonin levels (9–20). Diagnosis of AD would be enhanced greatly if it were possible to detect any of these pathological or neurochemical changes in patients before death. Without such measures, the clinical diagnosis of AD is confirmed pathologically in only 60–75% of the cases (21, 22); in these instances, Parkinson’s disease (PD) and vascular disease are the most prevalent unrecognized causes of dementia. This chapter describes our experience with two approaches that may render diagnosis of the dementias more accurate: morphological studies with magnetic resonance imaging (MRI) of the brain and biochemical analyses of neurotransmitter markers in the cerebrospinal fluid (CSF).


AChE Activity Senile Dementia Presenile Dementia Magnetic Resonance Imaging Brain Scan MHPG Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corkin S, Growdon JH, Rasmussen SL: Parental age as a risk factor in Alzheimer’s disease, Ann Neurol 13: 674–676, 1983.PubMedCrossRefGoogle Scholar
  2. 2.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM: Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Dept. of Health & Human Services Task Force on Alzheimer’s Disease. Neurol 34: 940, 1984.Google Scholar
  3. 3.
    Corsellis JAN: Aging and the dementias. In: Greenfield’s Neuropathology. Blackwood W, Corsellis JAN (eds). 1976, London, Edward Arnold, pp. 849–902.Google Scholar
  4. 4.
    Terry RD: Structural changes in the dementia of the Alzheimer’s type. In: Aging of the Brain and Dementia. Amaducci L, et al (eds). 1980, Raven Press, New York, pp 23–32.Google Scholar
  5. 5.
    Whitehouse PH, Price DL, Coyle JT, DeLong MR: Alzheimer’s disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10: 122–126, 1981.PubMedCrossRefGoogle Scholar
  6. 6.
    Mann DMA, Lincoln J, Yates PO et al: Changes in monoamine containing neurons of the human CNS in senile dementia. Brit J Psychiatry 236: 533–541, 1980.CrossRefGoogle Scholar
  7. 7.
    Bondareff W, Mountjoy CQ, Roth M: Loss of neurons of origin of the adrenergic projection of the cerebral cortex (nucleus locus coeruleus) in senile dementia. Neurol 32: 164–168, 1982.Google Scholar
  8. 8.
    Terry RD, Peck A, DeTheresa R, Schechter R, Horoupian DS; Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10: 184–192, 1981.PubMedCrossRefGoogle Scholar
  9. 9.
    Davies P, Maloney AFJ: Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet ii: 1403, 1976.Google Scholar
  10. 10.
    Perry EK, Tomlinson BE, Blessed BE, Bergmann K, Gibson PH, Perry RH: Correlation of cholinergic abnormalities with senile plaques and mental scores in senile dementia. Brit Med J 2: 1457–1459, 1978.PubMedCrossRefGoogle Scholar
  11. 11.
    Bowen DM, Sims NR, Benton S, Haan EA, Smith CCT, Neary D et al: Biochemical changes in cortical brain biopsies from demented patients in relation to morphological findings and pathogenesis. In: Alzheimer’s Disease: A Report of Progress in Research. Corkin S, Davis KL, Crowdon JH et al. (eds). 1982, Raven Press, New York, pp. 1–8.Google Scholar
  12. 12.
    Op Den Velde W, Stam FC: Some cerebral proteins and enzjone systems in Alzheimer’s presenile and senile dementia. J Amer Geriat Soc 1: 12–16, 1976.Google Scholar
  13. 13.
    Rossor MN, Emson PC, Iversen LL, Mountjoy CQ, Roth M, Fahrenkrug J, Rehfeld JF: Neuropeptides and neurotransmitters in cerebral cortex in Alzheimer’s disease. In: Alzheimer’s Disease: A Report of Progress in Research. Corkin S, Davis KL, Growdon JH et al. (eds). 1982, Raven Press, New York, pp. 15–24.Google Scholar
  14. 14.
    Perry RH, Candy JM, Perry K, Irving D, Blessed G, Fairbain AF, Tomlinson BE: Extensive loss of choline acetyltransferase is not reflected by neuronal loss in the nucleus of Meynert in Alzheimer’s disease. Neurosci Lett 33: 311–315, 1983.CrossRefGoogle Scholar
  15. 15.
    Adolfsson R, Gottfries CG, Roos BE, Winblad B: Changes in the brain catecholamines in patients with dementia of the Alzheimer type. Brit J Psychiatry 135: 216–233, 1979.CrossRefGoogle Scholar
  16. 16.
    Cross AJ, Crow TJ, Johnson JA, Joseph MH, Perry EK, Perry RH, Blessed G, Tomlinson BE. Monoamine metabolism in senile dementia of the Alzheimer type. J Neurol Sci 60: 383–392, 1983.PubMedCrossRefGoogle Scholar
  17. 17.
    Bowen DM, Allan SJ, Benton JS et al: Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem 41: 266–272, 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Bloom SR, Corsellis JAN: Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem 43: 1574–1581, 1984.PubMedCrossRefGoogle Scholar
  19. 19.
    Davies P, Katzman R, Terry RD: Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer’s disease and Alzheimer senile dementia. Nature 228: 279–280, 1980.CrossRefGoogle Scholar
  20. 20.
    Mountjoy CQ, Rossor MN, Iversen LI, Roth M: Correlation of cortical cholinergic and GABA deficits with quantitative neuropathological findings in senile dementia. Brain 107: 507–518, 1984.PubMedCrossRefGoogle Scholar
  21. 21.
    Terry RD: Aging, senile dementia, and Alzheimer’s disease. In: Alzheimer’s Disease: Senile Dementia and Related Disorders, Katzman R, Terry RD, Bick KL (eds). New York, Raven Press, 1978, pp. 11–14.Google Scholar
  22. 22.
    Davies P, Katz DA, Crystal HA: Choline acetyltransferase, somatostatin, and substance P in selected cases of Alzheimer’s disease. In: Alzheimer’s Disease: A Report of Progress in Research, Corkin S, Davis K, Growdon JH et al (eds). 1982, Raven Press, New York, pp. 9–14.Google Scholar
  23. 23.
    Lauterbur PC: Image formation by induced local interactions: examples employing NMR. Nature 242: 190–191, 1973.CrossRefGoogle Scholar
  24. 24.
    Kaufman L, Crooks, LE, Margulis AR: Nuclear Magnetic Resonance Imaging in Medicine. 1981, Igaku-Shoin, New York.Google Scholar
  25. 25.
    Witcofski RL, Karstaedt N, Aparlain CL: NMR Imaging. 1982, Bowman Gray School of Medicine Press, Winston-Salem.Google Scholar
  26. 26.
    Buonanno FS, Pykett IL, Brady TJ, Pohost CM: Clinical application of nuclear magnetic resonance. Disease-a-Month 29 (8), 1983.Google Scholar
  27. 27.
    Kramer CL, Buonanno FS: Physical principles of nuclear magnetic resonance and its application to imaging. In: Head and Spine Imaging, Gonzalez CF, Grossman CB, Marsden JC (eds). 1985, J Wiley & Sons, New York, pp. 859–887.Google Scholar
  28. 28.
    Doyle FM, Gorew JC, Pennock JM, Bydder GM, Steiner R, Young IR, Burl M, Loq, AH, Gilderdle DH, Bailes DR: Imaging of the brain by nuclear Loq, AH, gilderdle DH, Bailes DR: Imaging of the brain by nuclear magnetic resonance, Lancet ii; 56–57, 1981.Google Scholar
  29. 29.
    Bydder GM, Steinre R, Young IR, Hall AA, Thomas AD, Marshall H, Pallis CA, Legg NJ: Clinical NMR imaging of the brain: 140 cases. Amer J Radiology 139: 215–236, 1982.Google Scholar
  30. 30.
    Bailes DR, Young IR, Thomas TJ, Straughan, K, Bydder GM, Steiner RE: NMR imaging of the brain using spin-echo sequences, Clin Radiology 33: 395–414, 1982.CrossRefGoogle Scholar
  31. 31.
    Lukes SA, Aminoff MJ, Mills C, Normal D, Newton TH: Comparison of nuclear magnetic resonance an computed tomographic findings in patients with extrapyramidal movement disorders. Ann Neurol 12: 88, 1982.Google Scholar
  32. 32.
    Buonanno FS, Brady TJ, Pykett IL, et al.: NMR clinical results: Masssachusetts General Hospital. In: Nuclear Magnetic Resonance (NMR) Imaging. Partain CL, James AE, Rollo FD, Price RA (eds). Saunders, Philadelphia, 1983, pp. 207 - 230.Google Scholar
  33. 33.
    DeWitt LD, Buonanno FS, Kistler JP, Brady TJ, Pykett IL, Goldman MR, Davis KR: Nuclear magnetic resonance imaging in evaluation of clinical stroke syndromes. Ann Neurol 16: 535–545, 1984.PubMedCrossRefGoogle Scholar
  34. 34.
    Lukes SA, Crooks LE, Aminoff MJ, Kaufman L, Panitch HS, Mills C, Norman D: Nuclear magnetic resonance imaging in multiple sclerosis. Ann Neurol 13: 592–601, 1983.PubMedCrossRefGoogle Scholar
  35. 35.
    Besson JAO, Corrigan FM, Foreman EI, Ashcroft GW, Eastwood LM, Smith FW: Differentiating senile dementia of Alzheimer type and multi-infarct dementia by proton NMR imaging. Lancet ii: 789, 1983.Google Scholar
  36. 36.
    Blessed G, Tomlinson BE, Roth M: The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Brit J Psychiat 114: 797–811, 1968.PubMedCrossRefGoogle Scholar
  37. 37.
    Gibson CJ, Logue M, Growdon JH: CSF monoamine metabolite levels in Alzheimer’s and Parkinson’s disease. Arch Neurol 42: 489–495, 1985.PubMedGoogle Scholar
  38. 38.
    Nissen MJ, Corkin S, Buonanno FS, Growdon JH, Wray SH, Bauer J: Spatial contrast sensitivity in Alzheimer’s disease: general findings and a case report. Arch Neurol 42: 667–671, 1985.PubMedGoogle Scholar
  39. 39.
    Huckman MS, Fox J, Topel J: The validity of criteria for the evaluation of cerebral atrophy by computed tomography. Radiology 116: 85–92, 1975.PubMedGoogle Scholar
  40. 40.
    DeLeon MJ, Ferris SH, George AE, Reisberg, B, Kricheff II, Gershon S: Computed tomography evaluations of brain-behavior relationships in senile dementia of the Alzheimer’s type. Neurobiol Aging 1: 69–79, 1980.CrossRefGoogle Scholar
  41. 41.
    Hughes CP, Gado MH: Computed tomography and aging of the brain. Radiology 139: 391–396, 1981.PubMedGoogle Scholar
  42. 42.
    Albert M, Naeser MA, Levine HL, Garvey AH: Ventricular size in patients with presenile dementia of the Alzheimer type. Arch Neurol 41: 1258–1263, 1984.PubMedGoogle Scholar
  43. 43.
    Roberts MA, Caird FI: Computerized tomography and intellectual impairment in the elderly. J Neurol Neurosurg Psychiat 39: 986–989, 1976.PubMedCrossRefGoogle Scholar
  44. 44.
    Ford CV, Winter J: Computerized axial tomograms and dementia in elderly subjects. J Gerontol 36: 164–169, 1980.Google Scholar
  45. 45.
    Gado MH, Hughes CP, Danziger AW, Chi D, Jost G, Berg L: Volumetric measurements of the cerebrospinal fluid spaces in subjects with dementia and in controls. Radiology 144: 535–538, 1982.PubMedGoogle Scholar
  46. 46.
    Wilcock GK, Esiri MM, Bowen DM, Smith CCT: Alzheimer’s disease: Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sci 57: 407–417, 1982.PubMedCrossRefGoogle Scholar
  47. 47.
    Bennett-Clark C, Romagno MA, Joseph SA: Distribution of somatostatin in the rat brain: telencephalon and diencephalon. Brain Res 188: 473–486, 1980.CrossRefGoogle Scholar
  48. 48.
    Delfs J, Robbins R, Connolly JL, Dichter M, Reichlin S: Somatostatin production by rat cerebral neurons in dissociated cell culture. Nature 2: 676–677, 1980.CrossRefGoogle Scholar
  49. 49.
    Rössor MW, Effison PC, Mountjoy CQ, Roth M, Iversen LL: Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer’s type. Neurosci Lett 20; 373–377, 1980.PubMedCrossRefGoogle Scholar
  50. 50.
    Ferrier IN, Cross AJ, Johnson HA, Roberts GW, Crow TJ, Corsellis JAN, Lee YC, O’Shaughnessy D, Adrian TE, McGregor GP, Baracrese-Hamilton AJ, Bloom SR: Neuropeptides in Alzheimer’s type dementia. J Neurol Sci 62, 159–170, 1983.PubMedCrossRefGoogle Scholar
  51. 51.
    Nemoroff CB, Bissette G, Busby WH, Youngblood WW, Rossor M, Roth M, Kizer JS: Regional brain concentrations of neurotensin, thyrotropin releasing hormone and somatostatin in Alzheimer’s disease. Neurosci Abstr 9; 1052, 1983.Google Scholar
  52. 52.
    Beal MF, Mazurek MF, Tran VT, Chattha G, Bird ED, Martin JB: Reduced numbers of somatostatin receptors in cerebral cortex in Alzheimer’s disease. Science 229: 289–291, 1985.PubMedCrossRefGoogle Scholar
  53. 53.
    Perry EK, Blessed G, Tomlinson BE,M Perry RH, Crow TJ, Cross AJ, Dockray GJ, Dimaline R, Arregue A: Neurochemical activities in human temporal lobe related to aging with Alzheimer type changes. Neurobiol Aging 251–256, 1981.Google Scholar
  54. 54.
    Adolfsson R, Gottfries CG, Roos BE et al: Changes in the brain catecholamines in patients with dementia of Alzheimer type. Brit J Psychiat 135: 216–223, 1979.PubMedCrossRefGoogle Scholar
  55. 55.
    Foote SL, Bloom FE, Ashton-Jones G: Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiol Rev 844–914, 1983.Google Scholar
  56. 56.
    Ishii T: Distribution of Alzheimer’s neurofibrillary changes in the brainstem and hypothalamus of senile dementia. Acta Neurol Path 181–187, 1983.Google Scholar
  57. 57.
    Adams RD, Victor M (eds). Principles of Neurology. 1981, McGraw-Hill, New York.Google Scholar
  58. 58.
    Goldberg AM, McCaman RE: The determination of picamole amounts of acetylcholine in mammalian brain. J Neurochem 20: 1–8, 1973.PubMedCrossRefGoogle Scholar
  59. 59.
    Ellman GL, Courtney KD, Andres V, Featherstone RM: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88–95, 1961.PubMedCrossRefGoogle Scholar
  60. 60.
    Arnold MA, Reppert SM, Rorstad OP, Sagar SM, Jeutmann HT, Perlow MJ, Martin JB: Temporal patterns of somatostatin immunoreactivity in the cerebrospinal fluid of the rhesus monkey: effect of environmental lighting. J Neurosci 2: 574–580, 1982.Google Scholar
  61. 61.
    Hefti F: A simple, sensitive method for measuring 3,4-dihydroxyphenylacetic acid and homovanillic acid in rat brain tissue using high performance liquid chromatography with electrochemical detection. Life Sci 25: 775–782, 1979.PubMedCrossRefGoogle Scholar
  62. 62.
    Christie JE, Blackburn AM, Glen AIM, Zeisel S, Shering A, Yates CM: Effects of choline lecithin on CSF choline levels and on cognitive function in patients with presenile dementia of the Alzheimer type. In: Nutrition and the Brain, Barbeau A, Growdon JH, Wurtman RJ (eds). Raven Press, New York, pp. 377–388, 1979.Google Scholar
  63. 63.
    Growdon JH, Cohen EL, Wurtman RJ: Effects on oral choline administration on serum and CSF choline levels in patients with Huntington’s disease. J Neurochem 28: 229–231, 1977.PubMedCrossRefGoogle Scholar
  64. 64.
    Davis KL, Hsieh JY-K, Levy MI, Horvath TB, Davis BM, Mohs, RC: Cerebrospinal fluid acetylcholine, choline, and senile dementia of the Alzheimer type. Psychopharm Bull 18: 193–195, 1982.Google Scholar
  65. 65.
    Gardiner JE, Domer FR: Movement of choline between the blood and cerebrospinal fluid in the cat. Arch Int Pharmacodyn Ther 175: 482–496, 1968.PubMedGoogle Scholar
  66. 66.
    Schuberth J, Henden DJ: Transport of choline from plasma to cerebrospinal fluid in the rabbit with reference to the origin of choline and to acetylcholine metabolism in brain. Brain Res 84: 245–256, 1975.PubMedCrossRefGoogle Scholar
  67. 67.
    Aquilonius SM, Nystrom B, Schunerth J, Sundwall A: Cerebrospinal fluid choline in extrapyramidal disorders. J Neurochem 28: 229–231, 1972.Google Scholar
  68. 68.
    Jonsson LE, Schuberth J, Sundwall A: Amphetamine effect on the choline concentration of human cerebrospinal fluid. J Neurochem 28: 229–231, 1969.Google Scholar
  69. 69.
    Davis PL Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res 171: 319–327, 1979.Google Scholar
  70. 70.
    Johnson S, Domino EF: Cholinergic enzymatic activity of cerebrospinal fluid in patients with various neurological diseases. Clin Chim Acta 25: 421 - 428, 1971.CrossRefGoogle Scholar
  71. 71.
    Wood PL, Etienne P, Lai S, Gauthier S, Cajal S, Nair P: Reduced lumbar CSF somatostatin levels in Alzheimer’s disease. Life Sci 31: 2073-2–79, 1982.Google Scholar
  72. 72.
    Deutsch SI, Mohs RC, Rothpearl AB, Horvath TB, Davis KL: CSF acetylcholinesterase activity in neuropsychiatric disorders. Bio Psychiat 18: 1363–1373, 1983.Google Scholar
  73. 73.
    Soininen H, Halonen T, Riekkinen PJ: Acetylcholinesterase activities in cerebrospinal fluid of patients with senile dementia of Alzheimer type. Acta Neurol Scand 64: 217–224, 1981.PubMedCrossRefGoogle Scholar
  74. 74.
    Tune L, Gucker S, Folstein M, Oshida L, Coyle JT: Cerebrospinal fluid acetylcholinesterase activity in seniile dementia of the Alzheimer type. Ann Neurol 17: 46 - 48, 1985.PubMedCrossRefGoogle Scholar
  75. 75.
    Arendt T, Bigl V, Walther F, Sonntag M: Decreased ratio of CSF acetylcholinesterase to butyrylcholinesterase activity in Alzheimer’s disease. Lancet i: 173, 1984.Google Scholar
  76. 76.
    Appleyard ME, Smith AD, Wilcock GK, Esiri MM: Decreased CSF acetylcholinesterase activity in Alzheimer’s disease. Lancet i: 452 1983.Google Scholar
  77. 77.
    Huff FJ, Maire J-C, Growdon sJH, Corkin S, Wurtman RJ: CSF cholinesterases in Alzheimer’s disease. Neurol (Suppl 1 ): 218, 1985Google Scholar
  78. 78.
    Oram JJ, Edwardson J, Millard PH: Investigation of cerebrospinal fluid neuropeptides in idiopathic senile dementia. Gerontology 27: 216–223, 1981.PubMedCrossRefGoogle Scholar
  79. 79.
    Soininen HS, Jolkonen sJT, Reinidainen KJ, Halonen TO, Riekkinen PJ: Reduced Cholinesterase activity and somatostatin-like immunoreactivity in the cerebrospinal fluid of patients with dementia of the Alzheimer type. J Neurol Sci 63: 167–172, 1984.PubMedCrossRefGoogle Scholar
  80. 80.
    Francis PT, Bowen DM, Neary D, Palo J, Wikstrom J, Olney N: Somatostatin-like Immunoreactivity in lumbar cerebrospinal fluid from neurohistologically examined demented patients. Neurobiol Aging 5: 183–186, 1984.PubMedCrossRefGoogle Scholar
  81. 81.
    Serby M, Richardson SB, Twente S, Siekierski J, Corwin J, Rotrosen J: CSF somatostatin in Alzheimer’s disease. Neurobiol Aging 5: 187–189, 1984.PubMedCrossRefGoogle Scholar
  82. 82.
    Thai LJ, Rosenbaum DM, Horowitz SG, Sharpless NS, Waltz JM, Amin IM: Alterations in CSF somatostatin in neurologic disease. Neurol 33 (Suppl 2): 119, 1983.Google Scholar
  83. 83.
    Gottfries CG, Gottfries E, Roos BE: Homovanillic acid and 5-hydroxyindoleacetic acid in the cerebrospinal fluid related to rated mental and motor impairment in senile and presenile dementia. Acta Psychiat Scand 49: 257–263, 1970.CrossRefGoogle Scholar
  84. 84.
    Gottfries CG, Roos BE: Acid monoamine metabolites in cerebrospinal fluid patients from patients with presenile dementia (Alzheimer’s disease). Acta Psychiat Scand 49: 257–263, 1973.CrossRefGoogle Scholar
  85. 85.
    Gottfries CG, Kjallquist A, Ponten Y, Roos BE, Sundbarg G: Cerebrospinal fluid pH and monoamine and glucolytic metabolites in Alzheimer’s disease. Brit J Psychiat 124: 280–287, 1974.PubMedCrossRefGoogle Scholar
  86. 86.
    Guard 0, Renaud B, Chazot G: Metabolisme cerebral de la dopamine et de la Serotonine au cours des maladies d’Alzheimer et de Pick. Etude djmamique par le test au probenecide. Encephale 2: 293–303, 1976.Google Scholar
  87. 87.
    Raskin MA, Peskind ER, Halter JB, Jimerson DX: Norepinephrine and MHPG levels in CSF and plasma in Alzheimer’s disease. Arch Gen Psychiat 41: 343–346, 1984.Google Scholar
  88. 88.
    Mann JJ, Stanley M, Neophytides A, deLeon MJ, Ferris SH, Gershon S. Central amine metabolism in Alzheimer’s disease: in vivo relationship to cognitive deficit. Neurobiol Aging 2: 57–60, 1981.PubMedCrossRefGoogle Scholar
  89. 89.
    Beai MF, Growdon JH, Mazurek MF: CSF somatostatin in dementia. Neurol 34 (Suppl 1): 120, 1984.Google Scholar
  90. 90.
    Mazurek MF, Growdon JH, Beai MF: CSF vasopressin levels reduced in Alzheimer’s disease. Neurol 34 (Suppl 1): 280, 1984.Google Scholar
  91. 91.
    Foster NL, Hare TA, Chase TN: Spinal fluid GABA in Alzheimer’s disease. Neurol 33(Suppl 2):68, 1982.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John H. Growdon
    • 1
    • 2
    • 3
  • Suzanne Corkin
    • 2
    • 3
  • Ferdinando Buonanno
    • 1
    • 4
  • Kenneth Davis
    • 4
  • F. Jacob Huff
    • 1
    • 2
    • 3
  • M. Flint Beal
    • 1
    • 4
  • Carl Kramer
    • 1
    • 4
  1. 1.Department of NeurologyMassachusetts General HospitalBostonUSA
  2. 2.Department of PsychologyMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Clinical Research CenterMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of NeuroradiologyMassachusetts General HospitalBostonUSA

Personalised recommendations