Advertisement

The Role of Calcium in the Regulation of Plant Metabolism

  • Dieter Marmé
Part of the NATO ASI Series book series (volume 104)

Abstract

The free calcium ion is now recognized as a major intracellular regulator of numerous biochemical and physiological processes in plants. Over the last six or seven years a large body of evidence has been accumulated which allows us to propose a working hypothesis for the mode of action of calcium-dependent mechanisms. This hypothesis consists of essentially three parts: (1) The free cytoplasmic calcium concentration is low (less than µM) and under metabolic control; (2) The cytoplasmic calcium concentration can be regulated by various extra- (or intra-) cellular signals; (3) The cytoplasmic calcium binds to receptor proteins (calmodulin beeing the most important one) which become activated and capable to modify enzyme or other activities. It is the aim of this review to put together all the essential information which supports our working hypothesis.

Keywords

Calcium Uptake Outer Mitochondrial Membrane Free Calcium Calcium Transport FEBS Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrejauskas, E., Hertel, R., and Marmé, D., 1985, Specific binding of the calcium antagonist 3H-verapamil to membrane fractions from plants, J. Biol. Chem, 260: 5411–5414.Google Scholar
  2. Babu, Y. S., Sack, J. S., Greenhough, T. J., Bugg, C. E., Means, A. R., and Cook, W. J., 1985, Three-dimensional structure of calmodulin, Nature, 315: 37–40.CrossRefGoogle Scholar
  3. Dieter, P., and Marmé, D., 1980a, Partial purification of plant NAD kinase by calmodulin-Sepharose affinity chromatography, Cell Calcium, 1: 279–286.CrossRefGoogle Scholar
  4. Dieter, P., and Marmé, D., 1980b, Calmodulin-activated plant microsomal calcium uptake and purification of plant NAD kinase and other proteins by calmodulin-Sepharose affinity chromatography, Ann. N. Y. Acad. Sci, 356: 371–373.CrossRefGoogle Scholar
  5. Dieter, P., and Marmé, D., 1980c, Calcium transport in mitochondrial and microsomal fractions from higher plants, Planta, 150: 1–8.CrossRefGoogle Scholar
  6. Dieter, P., and Marmé, D., 1980d, Calmodulin activation of plant microsomal calcium uptake, Proc. Natl. Acad. Sci. USA, 77: 7311–7314.CrossRefGoogle Scholar
  7. Dieter, P., and Marme, D., 1981a, A calmodulin-dependent, microcomal ATPase from corn (Zea mays L.), FEBS Letters, 125: 245–248.CrossRefGoogle Scholar
  8. Dieter, P., and Marmé, D., 1981b, Far-red light irradiation of intact corn seedlings affects mitochondrial and calmodulin-dependent microsomal calcium transport, Biochem. Biophys. Res. Commun, 101: 749–755.CrossRefGoogle Scholar
  9. Dieter, P., and Marmé, D., 1983, The effect of calmodulin and far-red light on the kinetic properties of the mitochondrial and microsomal calcium ion transport system from corn, Planta, 159: 277–281.CrossRefGoogle Scholar
  10. Dieter, P., and Marmé, D., 1984, A calcium, calmodulin-dependent NAD kinase from corn is located in the outer mitochondrial membrane. J. Biol. Chem, 259: 184–189.Google Scholar
  11. Eldik van, L. J., and Watterson, D. M., 1985, Calmodulin structure and function, in: “Calcium and Cell Physiology”, D. Marme, ed., Springer, Heidelberg.Google Scholar
  12. Gross, J., 1982, Oxalate-enhanced active calcium uptake in membrane fractions from zucchini squash, in: “Plasmalemma and Tonoplast: Their Function in the Plant Cell”, D. Marmé, D. Marre, and R. Hertel, eds., Elsevier Biomedical Press, AmsterdamGoogle Scholar
  13. Hetherington, A., and Trewavas, A., 1982, Calcium-dependent protein kinase in pea shoot membranes, FEBS Letters, 145: 67–71.CrossRefGoogle Scholar
  14. Hetherington, A. M., and Trewavas, A., 1984, The regulation of membrane bound protein kinases by phospholipid and calcium, Ann. Proc. Phytochem. Soc. of Eur, 24: 181–197.Google Scholar
  15. Hodges, T. K., and Hanson, J. B., 1965, Calcium accumulation by maize mitochondria, PI. Physiol, 40: 101–108.CrossRefGoogle Scholar
  16. Kubowitz, B. P., Vanderhoef, L. N., and Hanson, J. B., 1982, ATP-dependent calbium transport in plasmalemma preparation from soybean hypocotyls, PI. Physiol, 69: 187–191.CrossRefGoogle Scholar
  17. Lukas, T. J., Iverson, D. B., Schleicher, M., and Watterson, D. M., 1984, Covalent structure of a higher plant calmodulin: Spinacea oleracea, Plant Physiol, 75: 788–795.CrossRefGoogle Scholar
  18. Marmé, D., and Dieter, P., 1983, The role of calcium and calmodulin in plants, in: “Calcium and Cell Function”, Vol. IV, Cheung, W. Y., ed., Academic Press, New York.Google Scholar
  19. Marmé, D., and Matzenauer, S., 1985, Protein kinase C and polyphosphoinositide metabolites: Their role in cellular signal transduction, in: “Calcium and Cell Physiology”, D. Marmé, ed., Springer, Heidelberg.CrossRefGoogle Scholar
  20. Means, A. R., Lagace, L., Simmen, R. C. M., and Putkey, J. A., 1985, Calmodulin gene structure and expression, in: “Calcium and Cell Physiology”, D. Marmé, ed., Springer, Heidelberg.Google Scholar
  21. Olah, Z., Berczi, A., and Erdei, L., 1983, Benzylaminopurine-induced coupling between calmodulin and Ca-ATP in wheat root microsomal membranes, FEBS Letters, 154: 395–399.CrossRefGoogle Scholar
  22. Polya, G. M., and Davies, J. R., 1982, Resolution of calcium-calmodulin-activated protein kinase from wheat germ, FEBS Letters, 150: 167–171CrossRefGoogle Scholar
  23. Ranjeva, Refeno, G., Boudet, A., and Marmé, D., 1983, Plant quinate: NAD+ oxidoreductase is activated by calcium-calmodulin-dependent phosphorylation, Proc. Nat. Acad. Sci. USA, 80: 5222–05224CrossRefGoogle Scholar
  24. Salimath, B. P., and Marmé, D., 1983, Protein phosphorylation and its regulation by calcium and calmodulin in membrane fractions from zucchini hypocotyls, Planta, 158: 560–568.CrossRefGoogle Scholar
  25. Schäfer, A., Bygrave, F., Matzenauer, S., and Marmé, D., 1985, Identification of a calcium and phospholipid-dependent protein kinase in plant tissue, FEBS Letters, in press.Google Scholar
  26. Simon, P., Bonzon, M., Greppin, H., and Marmé, D., 1984, Subchloroplastic localization of NAD kinase activity: evidence for a calcium, calmodu lin-dependent activity at the envelope and for a calcium, calmodulin dependent activity in the stroma of pea chloroplasts, FEBS Letters, 167: 332–338.CrossRefGoogle Scholar
  27. Tsien, R. Y., Pozzan, T., and Rink, T. J., 1982, Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator, J. Cell Biol, 94: 325–334.CrossRefGoogle Scholar
  28. Williamson, R. E., 1981, Free calcium concentration in the cytoplasm: a regulator of plant cell function, What’s New Plant Physiol, 12: 45–48.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Dieter Marmé
    • 1
  1. 1.Institute of Biology IIIUniversity of FreiburgFreiburgGermany

Personalised recommendations