The Role of Chitin in Hyphal Morphogenesis

  • J. H. Sietsma
  • C. A. Vermeulen
  • J. G. H. Wessels


Chitin is a structural component present in the wall of all fungi except the Oomycetes where cellulose plays a similar role. It is usually considered to be present as microfibrils, consisting of crystalline chitin embedded in an amorphous matrix (1), because most electronmicroscopical and X-ray diffraction studies show microfibrillar and crystalline chitin. However these results were usually obtained after drastic chemical treat¬ments of the wall and induction of crystallisation and microfibril formation by these treatments remains a possibility (2).


Schizophyllum Commune Chitin Synthesis Hyphal Wall Polyene Antibiotic Electron Microscopic Autoradiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. W. Gooday and A. P. J. Trinci, Wall structure and biosynthesis in fungi, in: “The eukaryotic microbial cell. Soc. Gen. Micro-biol. Symp. 30”, G. W. Gooday, D. Lloyd and A. P. J. Trinci, eds., Cambridge University Press, Cambridge (1980).Google Scholar
  2. 2.
    J. G. H. Wessels and J. H. Sietsma, Fungal cell walls: A survey, in: “Encyclopedia of Plant Physiology, Vol 13B”, W. Tanner and F. A. Loewus. eds., Springer Verlag, Berlin (1981).Google Scholar
  3. 3.
    J. H. Sietsma and J. G. H. Wessels, Solubility of (l-3)-ß-D/(l-6)-ß-D-glucan in fungal walls: Importance of presumed linkage between glucan and chitin. J. Gen. Microbiol. 125:209 (1981).PubMedGoogle Scholar
  4. 4.
    J. H. Sietsma and J. G. H. Wessels, Evidence for covalent linkages between chitin and (3-glucan in a fungal wall. J. Gen. Microbiol. 114:99 (1979).Google Scholar
  5. 5.
    L. L. Davis and S. Bartnicki-Garcia. Chitosan synthesis by the tandem action of chitin synthetase and chitin deacetylase from Mucor rouxii. Biochem. 23:1065 (1984).CrossRefGoogle Scholar
  6. 6.
    R. Datema, J. G. H. Wessels and H. van der Ende, The hyphal wall of Mucor mucedo. Eur. J. Biochem. 80:621 (1977).PubMedCrossRefGoogle Scholar
  7. J. G. H. Wessels and J. H. Sietsma, Cell wall synthesis and hyphal morphogenesis: A new model for apical growth. In: “Cell walls f81”, D. G. Robinson and H. Quader, eds., Wissenschaftliche Verlags¬gesellschaft, Stuttgart (1981).Google Scholar
  8. 8.
    J. Jelsma and D. R. Kreger. Ultrastructural observations on (l-3)-(3-D-glucan from fungal cell walls. Carbohydr. Res. 43:200 (1975).PubMedCrossRefGoogle Scholar
  9. 9.
    R. H. Marchessault and Y. Deslandes, Fine structure of (l-3)-ß-D-glucans: curdlan and paramylon. Carbohydr. Res. 75:231 (1979).CrossRefGoogle Scholar
  10. 10.
    J. H. Sietsma and J. G. H. Wessels, Chemical analysis of the hyphal wall of Schizophyllum commune. Biochim. Biophys. Acta 496:225 (1977).PubMedGoogle Scholar
  11. 11.
    P. van der Valk, R. Marchant and J. G. H. Wessels, Ultrastructural localization of polysaccharides in the wall and septum of the basidiomycete Schizophyllum commune. Exp. My col. 1 :69 (1977).Google Scholar
  12. 12.
    J. G. H. Wessels, J. H. Sietsma and A. S. M. Sonnenberg, Wall synthesis and assembly during hyphal morphogenesis in Schizophyllum commune. J. Gen. Microbiol. 129:1607 (1983).Google Scholar
  13. 13.
    A. S. M. Sonnenberg, J. H. Sietsma and J. G. H. Wessels, Biosynthesis of alkali-insoluble cell wall glucan in Schizophyllum commune protoplasts. J. Gen. Microbiol. 128:2667 (1982).Google Scholar
  14. 14.
    P. van der Valk and J. G. H. Wessels, Ultrastructure and localization of wall polymers during regeneration and reversion of protoplasts of Schizophyllum commune. Protoplasma 90:65 (1976).CrossRefGoogle Scholar
  15. 15.
    P. van der Valk and J. G. H. Wessels, Light and electron microscopic autoradiography of cell wall regeneration by Schizophyllum commune protoplasts. Acta Bot. Neerl. 26:43 (1977).Google Scholar
  16. 16.
    A. Duran, B. Bowers and E. Cabib, Chitin synthetase zymogen is attached to the yeast plasma membrane. Proc. Nat. Acad. Sei. 72: 3952 (1975).CrossRefGoogle Scholar
  17. 17.
    C. A. Vermeulen, M. B. J. M. Raeven and J. G. H. Wessels. Localization of chitin synthase activity in subcellular fractions of Schizophyllum commune protoplasts. J. Gen. Microbiol. 114:87 (1979).Google Scholar
  18. E. Cabib, A. Duran and B. Bowers, Localized activation of chitin synthetase in the initiation of yeast septum formation. In: “Fungal walls and hyphal growth”, J. H. Burnett and A. P. J. Trinci eds., Cambridge University Press, Cambridge (1979).Google Scholar
  19. 19.
    S. Bartnicki-Garcia, C. E. Bracker, E. Reyes and J. Ruiz-Herrera, Isolation of chitosomes from taxonomically diverse fungi and synthesis of chitin microfibrils in vitro. Exp. Mycol. 2:173 (1978).CrossRefGoogle Scholar
  20. 20.
    C. E. Bracker, J. Ruiz-Herrera and S. Bartnicki-Garcia, Structure and transformation of chitin synthase particles (chitosomes) during microfibril synthesis in vitro. Proc. Nat. Acad. Sci. 73:4570 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Hernandez, E. Lopez-Romero, J. Cerbon, J. Ruiz-Herrera, Lipid analysis of chitosomes, chitin synthesizing micro vesicles from Mucor rouxii. Exp. Mycol. 5:349 (1981).CrossRefGoogle Scholar
  22. R. Sentandreu, A. Martinez-Ramon and J. Ruiz-Herrera, Localization of chitin synthase in Mucor rouxii by an autoradiographic method. J. Gen. Microbiol. 130:J 193193 (1984).Google Scholar
  23. S. Bartnicki-Garcia and C. E. Bracker, Unique properties of chitosomes, in: Microbial cell wall synthesis and autolysis’1, C. Nombela, ed., Elsevier Science Publishers, Amsterdam (1984).Google Scholar
  24. 24.
    D. M. Rast and S. Bartnicki-Garcia, Effects of amphotericin B, nystatin and other polyene antibiotics on chitin synthase. Proc. Nat. Acad. Sci. 78:1233 (1981).PubMedCrossRefGoogle Scholar
  25. M. B. J. M. Raeven, Biosynthesis of chitin in fungi. Thesis University of Groningen (1981).Google Scholar
  26. 26.
    A. Duran and E. Cabib, Solubilization and parial purification of yeast chitin synthetase. Conformation of the zymogenic nature of the enzyme. J. Biol. Chem. 253:4419 (1978).Google Scholar
  27. 27.
    C. A. Vermeulen and J. G. H. Wessels, Evidence for a phospholipid requirement of chitin synthase in Schizophyllum commune. Curr. Microbiol. 8:67 (1983).CrossRefGoogle Scholar
  28. 28.
    E. Cabib, B. Bowers and R. L. Roberts, Vectorial synthesis of a polysaccharide by isolated plasma membranes. Proc. Nat. Acad. Sci. 80: 3318 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    D. H. Wolf and C. Ehmann, Studies on a proteinase B mutant of yeast. Eur. J. Biochem. 98:375 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    G. S. Zubenko, A. P. Mitchell and E. W. Jones, Septum formation, cell division and sporulation in mutants of yeast deficient in proteinase B. Proc. Nat. Acad. Sci. 76:2395 (1979).PubMedCrossRefGoogle Scholar
  31. J. Ruiz-Herrera and S. Bartnicki-Garcia, Proteolytic activation and inactivation of chitin synthetase from Mucor rouxii. J. Gen. Microbiol. 97:241241 (1976).PubMedGoogle Scholar
  32. 32.
    D. Katz and R. F. Rosenberger, Hyphal wall synthesis in Aspergillus nidulans: effect of protein synthesis inhibitor and osmotic shock on chitin insertion and morphogenesis. J. Bact. 108:184 (1971).PubMedGoogle Scholar
  33. 33.
    E. Lopez-Romero, S. Bartnicki-Garcia and J. Ruiz-Herrera. Purification of inhibitory protein of chitin synthase from Mucor rouxii. Biochim. Biophys. Acta 525:338 (1978).PubMedGoogle Scholar
  34. 34.
    G. D. Craig, J. M. Campbell and J. F. Peberdy, Endogenous chitin synthase inhibitor in Aspergillus nidulans. Trans. Br. Mycol. Soc. 7:579 (1981).CrossRefGoogle Scholar
  35. 35.
    E. Lopez-Romero, J. Ruiz-Herrera and S. Bartnicki-Garcia, The inhibitory protein of chitin synthetase from Mucor rouxii is a chitinase. Biochim. Biophys. Acta 702:233 (1982).PubMedCrossRefGoogle Scholar
  36. 36.
    R. M. Brown Jr. and D. Montezinos, Cellulose microfibrils: Visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc. Nat. Acad. Sci. 73:143 (1976).PubMedCrossRefGoogle Scholar
  37. 37.
    N. A. R. Gow. Transhyphal electrical currents in fungi. J. Gen. Microbiol. 130:3313 (1984).PubMedGoogle Scholar
  38. 38.
    S. C. de Vries and J. G. H. Wessels, Polarized outgrowth of hyphae by constant electrical fields during reversion of Schizophyllum commune protoplasts. Exp. Mycol. 6:95 (1982).CrossRefGoogle Scholar
  39. 39.
    J. M. Picton and M. W. Steere, A model for the mechanism of tip extension in pollen tubes. J. Theor. Biol. 98:15 (1982).CrossRefGoogle Scholar
  40. 40.
    R. J. Howard and J. R. Aist. Cytoplasmic microtubules and fungal morphogenesis. J. Cell Biol. 87:55 (1980).PubMedCrossRefGoogle Scholar
  41. 41.
    C. A. Vermeulen and J. G. H. Wessels. Ultrastructural differences between wall apices of growing and non-growing hyphae of Schizophyllum commune. Protoplasma 120:123 (1984).CrossRefGoogle Scholar
  42. 42.
    W. Herth. Calcofluor white and congo red inhibit chitin microfibril assembly of Poterioochromonas. J. Cell Biol. 87:442 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. H. Sietsma
    • 1
  • C. A. Vermeulen
    • 1
  • J. G. H. Wessels
    • 1
  1. 1.Department of Plant Physiology, University of Groningen, Biological CentreHarenThe Netherlands

Personalised recommendations