Advertisement

Mode of Inhibition of Chitin Synthesis by Diflubenzuron

  • T. Mitsui

Abstract

Diflubenzuron and related benzoylphenyl ureas have been found to inhibit chitin synthesis in insect integuments and midguts but the mode of action of the insecticides still remains unknown. Diflubenzuron was reported to inhibit chitin synthetase from brine shrimp (l), Lucilia cuprina and two other species of Dipteran insects (2). However, the insecticide was neither an in vitro inhibitor of the integumental chitin synthetase in Trichoplusiani and Hyalophora cecropia (3) nor the whole-body or midgut enzyme preparations in Tribolium castaneum (4), Stomoxys calcitrans (5, 6) and Mamestra brassicae (7, 8) Other hypotheses have been proposed including an inhibition of a proteolytic enzyme required for activation of the enzyme from a zymogen form (9) and an inhibition via active metabolites or as a blocking agent by direct binding to a non-chitin synthetase site important in chitin polymerization and fibrillogenesis (4). We proposed another mechanism (10, 11), that the insecticide may inhibit UDP-N-acetylglucosamine transport across the microvilli membranes in the midgut epithelial cells.

Keywords

Outer Face Tribolium Castaneum Peritrophic Membrane Chitin Synthesis Midgut Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. N. Horst, J. Biol. Chem., 256: 1412 (1981).PubMedGoogle Scholar
  2. 2.
    I. F. Turnbull and A. J. Howells, Aust. J. Biol. Sci., 36: 25 (1983).Google Scholar
  3. 3.
    E. Cohen and J. E. Casida, Pestic. Biochem. Physiol., 17: 301 (1982).CrossRefGoogle Scholar
  4. 4.
    E. Cohen and J. E. Casida, Pestic. Biochem. Physiol., 13: 129 (1980).CrossRefGoogle Scholar
  5. 5.
    R. T. Mayer, A. C. Chen and J. R. DeLoach, Insect Biochem., 10: 549 (1980).CrossRefGoogle Scholar
  6. 6.
    R. T. Mayer, A. C. Chen and J. R. DeLoach, Experientia, 37: 337 (1981).CrossRefGoogle Scholar
  7. 7.
    T. Mitsui, J. Fukami and L. M. Riddiford in: “Regulation of Insect Development and Behaviour”, F. Sehnal, A. Zabza, J. J. Menn, and B. Cymborowski, eds., Sci. Papers Inst. Org. Phys. Chem. Wroclaw Technical University, 22:1131 (1981).Google Scholar
  8. 8.
    T. Mitsui, C. Nobusawa and J. Fukami, J. Pesticide Sci., 6: 155 (1981).Google Scholar
  9. 9.
    L. Leighton and E. P. Marks, Science, 213: 905 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Mitsui, C. Nobusawa, J. Fukami and I. Yamaguchi, J. Pesticide Sci., 9: 19 (1984).Google Scholar
  11. 11.
    T. Mitsui, M. Tada, C. Nobusawa and I. Yamaguchi, J. Pesticide Sci., 10:55 (1985).Google Scholar
  12. 12.
    E. G. Bligh and W. J. Dyer, Can. J. Biochem. Physiol., 37:911 (1959).PubMedCrossRefGoogle Scholar
  13. 13.
    O. Kodama, K. Yamashita and T. Akasuka, Agri. Biol. Chem., 44:1045 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • T. Mitsui
    • 1
  1. 1.The Institute of Physical and Chemical Research HirosawaWako SaitamaJapan

Personalised recommendations