Skip to main content

Microtubules as Targets for Drug and Toxic Chemical Action: The Mechanisms of Action of Colchicine and Vinblastine

  • Chapter
The Cytoskeleton

Abstract

Colchicine (Fig. 1), the earliest chemical substance discovered that acts on microtubules, was initially described as a spindle poison in the 1930s because it produced strikingly disorganized mitotic spindles and chromosome patterns in treated cells (reviewed by Dustin, 1978). It was many years before it was established that the mechanism of action of colchicine involved disruption of microtubules (see Borisy and Taylor, 1967a,b; Wilson and Friedkin, 1967). Other microtubule-disruptive substances originally identified as spindle poisons include griseofulvin (see Deysson, 1964), podophyllotoxin, a plant alkaloid that binds to tubulin in the vicinity of the colchicine binding site (see Wilson, 1975), and a clinically important group of alkaloids commonly known as the “vinca alkaloids.” These drugs were discovered in 1957 in extracts of the plant Catharanthus rosea, originally called Vinca rosea (Cutts et al., 1957; Noble et al., 1958). Three vinca alkaloids, vinblastine, vincristine (Fig. 1), and vindesine, are currently used for the treatment of several forms of cancer (Gerzon, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bonhaus, D. W., McTormack, K. M., Mayor, G. H., Mattson, J.C. and Hook, J.B., 1980, The effects of aluminum on microtubular integrity using in vitro and in vivo models, Toxicol.Let., 6: 141–147.

    CAS  Google Scholar 

  • Bryan, J., 1972, Definition of three classes of binding sites in isolated microtubule crystals, Biochem., 11: 2611–2616.

    Google Scholar 

  • Bryan, J., Nagle, B. W. and Meza, I., 1975, Inhibition of tubulin assembly by RNA and other polyanions. A mechanism, in: “Microtubules and Microtubule Inhibitors,” M. Borgers and MT de Brabander, eds., pp. 91–101, North-Holland, Amsterdam.

    Google Scholar 

  • Deery, W. J. and Weisenberg, R. C., 1981, Kinetic and steady-state analysis of microtubules in the presence of colchicine, Biochem., 20: 2316–2324.

    Google Scholar 

  • Detrich, H. W., III, Williams, R. C., Jr., MacDonald, T. L., Wilson, L. and Puett, D., 1981, Changes in the circular dichroic spectrum of colchicine associated with its binding to tubulin, Biochem., 20: 5999–6005.

    Google Scholar 

  • Dustin, P.7 1978, “Microtubules,” Springer-Verlag, Berlin.

    Google Scholar 

  • Farrell, K. W. and Wilson, L., 1984, The differential kinetic stabilization of opposite microtubule ends by tubulin-colchicine complexes, Biochem., 23: 3741–3748.

    Google Scholar 

  • Garland, D. L., 1978, Kinetics and mechanism of colchicine binding to tubulin: evidence for ligand-induced conformational change, Biochem., 17: 4266–4272.

    Google Scholar 

  • Gerzon, K., 1980, Dimeric catharanthus alkaloids, in; “Anticancer Agents Based on Natural Product Models,” J. M. Cassaday and J.D. Douros, eds., pp. 271–317, Academic Press, New York.

    Google Scholar 

  • Himes, R. H., Kersey, R. N., Heller-Bettinger, I. and Samson, F. E., 1976, Action of the Vinca alkaloids vincristine, vinblastine, and desacetyl vinblastine amide on microtubules in vitro, Cancer Res., 36: 3798–3802.

    Google Scholar 

  • Kilmartin, J., 1981, Purification of yeast tubulin by self-assembly i£ vitro, Biochem., 20: 3629–3633.

    Google Scholar 

  • Kingsbury, E. W. and Volez, H., 1969, Induction of helical arrays of ribosomes by vinblastine sulfate in Escherichia coli, Science, 166: 768–769.

    CAS  Google Scholar 

  • Marantz, R., Ventilla, M. and Shelanski, M., 1969, Vinblastine-induced precipitation of microtubule protein, Science, 165: 498–499.

    CAS  Google Scholar 

  • Margolis, R. L. and Wilson, L., 1981, Microtubule treadmills-possible molecular machinery, Nature (London), 293: 705–711.

    CAS  Google Scholar 

  • Margolis, R. L., Rauch, C. T. and Wilson, L., 1980, Mechanism of colchicine-dimer addition to microtubule ends: Implications for the microtubule polymerization mechanism, Biochemistry, 19: 5550–5557.

    CAS  Google Scholar 

  • Na, G. C. and Timasheff, S. N., 1980a, Stoichiometry of the vinblastine-induced self-association of calf brain tubulin, Biochem., 19: 1347–1354.

    Google Scholar 

  • Na, G. C. and Timasheff, S. N., 1980b, Thermodynamic linkage between tubulin self-association and the binding of vinblastine, Biochem., 19: 1355–1369.

    Google Scholar 

  • Noble, R. L., Beer, C. T. and Cutts, J. H., 1958, Role of chance observations in chemotherapy: Vinca rosea, Ann. N.Y. Acad. Sci., 76: 882–894.

    Article  CAS  Google Scholar 

  • O’Brien, E. T., Jacobs, R. S. and Wilson, L., 1983, Inhibition of bovine brain microtubule assembly in vitro by stypoldione, MoT. Pharmacol., 24: 493-499.

    Google Scholar 

  • Olmsted, J. B. and Borisy, G. G., 1973, Characterization of microtubule assembly in porcine brain extracts by viscometry, Biochem., 12: 4282–4289.

    Google Scholar 

  • Remillard, S., Rebhun, L. I., Howie, G. A. and Kupchan, S. M., 1975, Antimitotic activity of the potent tumor inhibitor maytansine, Science, 189: 1002–1005.

    Google Scholar 

  • Schochet, S. S., Jr., Lambert, P. W. and Earle, K. M., 1968, Neuronal changes induced by intrathecal vincristine sulfate, J. Neuropathol. Exp. Neurol., 27:645–658. Sternlicht, H. and Ringel, I., 1979, Colchicine inhibition of microtubule assembly via copolymer formation, J. Biol. Chem., 254: 10540-10550.

    Google Scholar 

  • Wilson, L., 1975, Microtubules as drug receptors: Pharmacological properties of microtubule protein, Ann. N.Y. Acad. Sci., 253: 213-231.

    Google Scholar 

  • Wilson, L. and Friedkin, M., 1967, The biochemical events of mitosis. II. The in vivo and in vitro binding of colchicine in grasshopper embryos and Tts possible relation to inhibition of mitosis, Biochem., 6: 3126-3135.

    Google Scholar 

  • Wilson, L. and Meza, I., 1973, The mechanism of action of colchicine. Colchicine binding properties of sea urchin sperm tail outer doublet tubulin, J. Cell Biol., 58: 709-719.

    Google Scholar 

  • Wilson, L., Bryan, J., Ruby, A. and Mazia, D., 1970, Precipitation of proteins by vinblastine and calcium ions, Proc. Nat. Acad. Sci., 66: 807-814.

    Google Scholar 

  • Wilson, L., Snyder, K. B., Thompson, W. C. and Margolis, R. L., 1982a, A rapid filtration assay for analysis of microtubule assembly, disassembly and steady-state tubulin, Methods in Cell Biol., 24: 159–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Wilson, L. (1986). Microtubules as Targets for Drug and Toxic Chemical Action: The Mechanisms of Action of Colchicine and Vinblastine. In: Clarkson, T.W., Sager, P.R., Syversen, T.L.M. (eds) The Cytoskeleton. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2161-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2161-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9274-6

  • Online ISBN: 978-1-4613-2161-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics