Skip to main content

Abstract

Microtubules, microfilaments, and intermediate filaments (IF) form the three filamentous organizations of the cytoplasm. Whereas the major structural components of the two former systems—actin and tubulin—are highly conserved in different cell types, the constituent proteins of IF can vary greatly in amino acid sequence and length (40–200 K). This peculiar property led originally to much confusion as to the similarity and divergence of IF proteins. By the late 1970s it was obvious that IF proteins could be subdivided by biochemical and particularly by immunological data in a histologically meaningful manner as their expression pattern coincided with known rules of embryonic differentiation (for review see Lazarides, 1982; Osborn et al., 1982). Five subclasses were identified: epithelial keratins, neuronal neurofilaments, desmin filaments of most muscles, GFAP filaments of glia, and vimentin filaments present primarily in mesenchymal cells. Subsequent biochemical results documented around 20 different human keratins some of which were again markers of morphologically distinct epithelia (for review see Moll et al., 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi, U., Fowler, W. E., Rew, P., and Sun, T. T., 1983, The fibrillar substructure of keratin filaments unraveled, J. Cell Biol 97: 1131.

    Article  PubMed  CAS  Google Scholar 

  • Ahmadi, B., and Speakman, P. T., 1978, Suberimidate crosslinking shows that a rod shaped, low cystin, high helix protein prepared by limited proteolysis of reduced wool has four protein chains, FEBS Lett. 94: 365.

    Article  PubMed  CAS  Google Scholar 

  • Ahmadi, B., Boston, N. M., Dobb, M. G., and Speakman, P. T., 1979, Possible four-chain repeating unit in the microfibril of wool, in: Fibrous Proteins (D. A. D. Parry, ed.), Vol. 2, pp. 161–166, Academic Press, New York.

    Google Scholar 

  • Chin, T. K., Eagles, P. A. M., and Maggs, A., 1983, The proteolytic digestion of ox-neurofllaments with trypsin and α-chymotrypsin, Biochem. J. 215: 239.

    PubMed  CAS  Google Scholar 

  • Crewther, W. G., 1976, Primary structure and chemical properties of wool, in: Proceedings of the 5th International Wool Textile Research Conference, Aachen, 1975, Vol. 1, pp. 1 –101.

    Google Scholar 

  • Crewther, W. G., and Dowling, L. M., 1971, The preparation and properties of large peptides from the helical regions of low-sulphur proteins of wool, Appl. Polymer Symp. 18: 1–20.

    Google Scholar 

  • Crewther, W. G., Dowling, L. M., and Inglis, A. S., 1980, Amino acid sequence data from a microfibrillar protein of α-keratin, in: Proceedings of the 6th Quinquennial International Wool Textile Research Conference, Pretoria, Vol. 2, pp. 79–91.

    Google Scholar 

  • Crewther, W. G., Dowling, L. M., Steinert, P. M., and Parry, D. A. D., 1983, The structure of intermediate filaments, Int. J. Biol. Macromol. 5: 267.

    Article  CAS  Google Scholar 

  • Day, W. A., and Gilbert, D. S., 1972, X-ray diffraction pattern of axoplasm, Biochem. Biophys. Acta 285: 506.

    Google Scholar 

  • Debus, E., Weber, K., and Osborn, M., 1983, Monoclonal antibodies to desmin, the muscle- specific intermediate filament protein, EMBO J. 2: 2305.

    PubMed  CAS  Google Scholar 

  • Dowling, L. M., Parry, D. A. D., and Sparrow, L. G., 1983, Structural homology between a- keratin and the intermediate filament proteins desmin and vimentin, Biosci. Rep. 3: 73.

    Article  PubMed  CAS  Google Scholar 

  • Eagles, P. A. M., Gilbert, D. S., and Maggs, A., 1981, The polypeptide composition of axoplasm and of neurofilaments from the marine worm Myxicola infundibulum, Biochem. J. 199: 89.

    CAS  Google Scholar 

  • Franke, W. W., Schiller, D. L., Hatzfeld, R., and Winter, S., 1983, Protein complexes of intermediate-sized filaments: Melting of cytokeratin complexes in urea reveals different polypeptide separation characteristics, Proc. Natl. Acad. Sci. USA 80: 7113.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, R. D. B., and McRae, T. P., 1983, The structure of the a-keratin microfibril, Biosci. Rep. 3:517.

    Google Scholar 

  • Fraser, R. D. B., and McRae, T. P., 1983, The structure of the α-keratin microfibril, Biosci. Rep. 3: 517.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, R. D. B., and McRae, T. P., 1985, Biosci. Rep. 5: 573–579.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, R. D. B., McRae, T. P., and Suzuki, E., 1976, Structure of the a-keratin microfibril, J. Mol. Biol. 108: 435.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E., and Marchuk, D., 1983, Type I and type II keratins have evolved from lower eu- karyotes to form the epidermal intermediate filaments in mammalian skin, Proc. Natl. Acad. Sci. USA 80: 5857.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, E. E., Dahl, D., and Bignami, A., 1984, Formation of 10-nanometer filaments from the 150 K-Dalton neurofilament protein in vitro, J. Neurosci. Res. 11: 145.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, N., and Weber, K., 1981a, Selfassembly in vitro of the 68,000 molecular weight component of the mammalian neurofilament triplet proteins into intermediate-sized filaments, J. Mol. Biol. 151: 565.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, N., and Weber, K., 1981b, Comparison of the proteins of two immunologically distinct intermediate-sized filaments by amino acid sequence analysis: desmin and vimentin, Proc. Nat. Acad. Sci. USA 78: 4120.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, N., and Weber, K., 1982, The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins including the wool a-keratins, EMBO J. 1: 1649.

    PubMed  CAS  Google Scholar 

  • Geisler, N., and Weber, K., 1983, Amino acid sequence data on glial fibrillary acidic protein (GFA); implications for the subdivision of intermediate filaments into epithelial and non- epithelial members, EMBO J. 2: 2059.

    PubMed  CAS  Google Scholar 

  • Geisler, N., Kaufmann, E., and Weber, K., 1982a, Proteinchemical characterization of three structurally distinct domains along the protofilament unit of desmin 10 nm filaments, Cell 30: 277.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, N., Plessmann, U., and Weber, K., 1982b, Related amino acid sequences in neurofilaments and non neuronal intermediate filaments, Nature 296: 448.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, N., Kaufmann, E., Fischer, S., Plessmann, U., and Weber, K., 1983a, Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins, EMBO J. 2: 1295.

    PubMed  CAS  Google Scholar 

  • Geisler, N., Plessmann, U., and Weber, K., 1983b, Amino acid sequence characterization of mammalian vimentin, the mesenchymal intermediate filament protein, FEBS Lett. 163: 22.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, N., Fischer, S., Vandekerckhove, J., Plessmann, U., and Weber, K., 1984, Hybrid character of a large neurofilament protein (NF-M): Intermediate filament type sequence followed by a long and acidic carboxy-terminal extension, EMBO J. 3: 2701.

    PubMed  CAS  Google Scholar 

  • Geisler, N., Kaufmann, E., and Weber, K., 1985a, Antiparallel orientation of the two double- stranded coiled-coils in the tetrameric protofilament unit of intermediate filaments, J. Mol. Biol. 182: 173.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, N., Fischer, S., Vandekerckhove, J., Van Damme, J., Plessmann, U., and Weber, K., 1985b, Protein-chemical characterization of NF-H, the largest mammalian neurofilament component; intermediate filament-type sequences followed by a unique carboxy-terminal extension, EMBO J. 4: 57.

    PubMed  CAS  Google Scholar 

  • Geisler, N., Plessmann, U., and Weber, K., 1985c, The complete amino acid sequence of the major mammalian neurofilament protein (NF-L), FEBS Lett. 182: 475.

    Article  PubMed  CAS  Google Scholar 

  • Hanukoglu, I, and Fuchs, E., 1982, The CDNA sequence of a human epidermal keratin: divergence of sequence but conservation of structure among intermediate filament proteins, Cell 31: 243.

    Article  PubMed  CAS  Google Scholar 

  • Hanukoglu, I., and Fuchs, E., 1983, The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins, Cell 33: 915.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, D., Geisler, N., and Weber, K., 1982, A periodic ultrastructure in intermediate filaments, J. Mol Biol 155: 173.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, N., Glicksman, M. A., and Willard, M. B., 1984, Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton, J. Cell Biol. 98: 1523.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, P. N., and Lasek, R. J., 1975, The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol. 66: 351.

    Article  PubMed  CAS  Google Scholar 

  • Hong, B., and Davison, P. F., 1981, Isolation and characterization of a soluble, immunoreactive peptide of glial fibrillary acidic protein, Biochim. Biophys. Acta 670: 139.

    PubMed  CAS  Google Scholar 

  • Ip, W., Hartzer, M. K. Y-Y., Pang, S., and Robson, R. M., 1985, In vitro assembly of vimentin and its implications on the structure of intermediate filaments, J. Mol. Biol. 183: 365.

    Article  PubMed  CAS  Google Scholar 

  • Jones, S. M., and Williams, C., 1982, Phosphate content of mammalian neurofilaments, J. Biol. Chem. 257: 9902.

    PubMed  CAS  Google Scholar 

  • Julien, J. P., and Mushynski, W. E., 1982, Multiple phosphorylation sites in mammalian neurofilament polypeptides, J. Biol. Chem. 257: 10467.

    PubMed  CAS  Google Scholar 

  • Julien, J. P., and Mushynski, W. E., 1983, The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments, J. Biol. Chem. 258: 4019.

    PubMed  CAS  Google Scholar 

  • Kaufmann, E., Geisler, N., and Weber, K., 1984, SDS-Page strongly overestimates the molecular masses of the neurofilament proteins, FEBS Lett. 170: 81.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, E., Weber, K., and Geisler, N., 1985, Intermediate filament forming ability of desmin derivatives lacking either the aminoterminal 67 or carboxyterminal 27 residues, J. Mol. Biol. 185: 733.

    Article  PubMed  CAS  Google Scholar 

  • Lasek, R. J., Oblinger, M. M., and Drake, P. F., 1983, Molecular biology of neuronal geometry: Expression of neurofilament genes influences axonal diameter, Cold Spring Harbor Symp. Quant. Biol. 48: 731.

    PubMed  CAS  Google Scholar 

  • Lazarides, E., 1982, Intermediate filaments: a chemically heterogenous developmentally regulated class of proteins, Ann. Rev. Biochem. 51: 219.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L. D., and Baden, H. P., 1976, Organization of the polypeptide chains in mammalian keratin, Nature 264:377.,

    Article  PubMed  CAS  Google Scholar 

  • Lewis, A. S., and Cowan, N. J., 1985, Genetics, evolution and expression of the 68 Kd neurofilament protein: isolation of a cloned cDNA probe, J. Cell Biol. 100: 843.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S. A., Balcarek, J. M., Krek, V., Shelanski, M., and Cowan, N. J., 1984, Sequence of a cDNA clone encoding mouse glial fibrillary acidic protein: Structural conservation of intermediate filaments, Proc. Natl. Acad. Sci. USA 81: 2743.

    Article  PubMed  CAS  Google Scholar 

  • Liem, R. K. H., and Hutchinson, S. B., 1982, Purification of individual components of the neurofilament triplet: filament assembly from the 70,000-dalton subunit, Biochemistry 21: 3221.

    Article  PubMed  CAS  Google Scholar 

  • Liem, R. K. H., Chin, S. S. M., Moraru, E., and Wang, E., 1985, Monoclonal antibodies to epitopes on different regions of the 200,000 Dalton neurofilament protein, Exp. Cell Res. 156: 419.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y., and Johnson, P., 1983, The TV-terminal domain of desmin is not involved in intermediate filament formation: evidence from thrombic digestion studies, Int. J. Biol. Macromol. 5: 347.

    Article  CAS  Google Scholar 

  • Marchuk, D., McCrohon, S., and Fuchs, E., 1984, Remarkable conservation of structure among intermediate filament genes, Cell 39: 491.

    Article  PubMed  CAS  Google Scholar 

  • McLachlan, A. D., 1978, Coiled coil formation and sequence regularities in the helical regions of a-keratin, J. Mol Biol. 124: 297.

    Article  PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Karn J., 1982, Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle, Nature 299: 226.

    Article  PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Stewart, M., 1975, Tropomyosin coiled-coil interactions: Evidence for an u McLachlan, A. D., and Stewart, M., 1976, The 14-fold periodicity in a-tropomyosin and the interaction with actin, J. Mol. Biol. 103: 271.

    Article  Google Scholar 

  • McLachlan, A. D., and Stewart, M., 1982, Periodic charge distribution in the intermediate filament proteins desmin and vimentin, J. Mol. Biol. 162: 693.

    Article  PubMed  CAS  Google Scholar 

  • Milam, L., and Erickson, H. P., 1982, Visualization of a 21-nm axial periodicity in shadowed keratin filaments and neurofilaments, J. Cell Biol. 94: 592.

    Article  PubMed  CAS  Google Scholar 

  • Milstone, L. M., 1981, Isolation and characterization of two polypeptides that form intermediate filaments in bovine esophageal epithelium, J. Cell Biol. 88: 317.

    Article  PubMed  CAS  Google Scholar 

  • Moll, R., Franke, W. W., Schiller, D., Geiger, B., and Krepler, R., 1982, The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors, and cultured cells, Cell 31: 11.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, W. J., and Traub, P., 1981, Properties of a Ca2 + -activated protease specific for the intermediate-sized filament protein vimentin in Ehrlich ascitis tumour cells, Eur. J. Biochem. 116: 51.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, W. J., and Traub, P., 1983, Proteolysis of vimentin and desmin by the Ca2 +-activated proteinase specific for these intermediate filament proteins, Mol. Cell Biol. 3: 1146.

    PubMed  CAS  Google Scholar 

  • Nelson, W. J., Vorgias, C. E., and Traub, P., 1982, A rapid method for the large scale purification of the intermediate filament protein vimentin by single-stranded DNA-cellulose affinity chromatography, Biochem. Biophys. Res. Commun. 106: 1145.

    Article  Google Scholar 

  • Osborn, M., Geisler, N., Shaw, G., Sharp, G., and Weber, K., 1982, Intermediate filaments, Cold Spring Harbor Symp. Quant. Biol. 46: 413.

    PubMed  Google Scholar 

  • Pang, Y. Y-S., Robson, R. M., Hartzer, M. K., and Stromer, M. H., 1983, Subunit structure of the desmin and vimentin protofilament units, J. Cell Biol. 97: 226a.

    Google Scholar 

  • Parry, D. A. D., 1981, Structure of rabbit skeletal muscle. Analysis of the amino acid sequences of two fragments from the rod region, J. Mol. Biol. 153: 459.

    Article  PubMed  CAS  Google Scholar 

  • Parry, D. A. D., Crewther, W. G., Fraser, R. D. B., and McRae, T. P., 1977, Structure of cx-keratin: structural implication of the amino acid sequences of the type I and type II chain segments, J. Mol. Biol. 113: 449.

    Article  PubMed  CAS  Google Scholar 

  • Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R., Dowding, A. J., and Anderton, B. H., 1981, Cell classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, Cell 37: 419.

    Article  Google Scholar 

  • Quax, W. J., Egberts, W. V., Hendriks, W., Quax-Jeuken, Y., and Bloemendal, H., 1983, The structure of the vimentin gene, Cell 35: 215.

    Article  PubMed  CAS  Google Scholar 

  • Quax, W., Van Den Heuvel, R., Egberts, W. V., Quax-Jeuken, Y., and Bloemendal, H., 1984, Intermediate filament cDNAs from BHK-21 cells: Demonstration of distinct genes for desmin and vimentin in all vertebrate classes, Proc. Natl. Acad. Sci. USA 81: 5970.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, R. A., and Franke, W. W., 1982, Heteropolymer filaments of vimentin and desmin in vascular smooth muscle tissue and cultured hamster kidney cells demonstrated by chemical crosslinking, Proc. Natl. Acad. Sci. USA 79: 3452.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, R. A., and Franke, W. W., 1983, Molecular interactions in intermediate-sized filaments revealed by chemical crosslinking, Eur. J. Biochem. 132: 477.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, R. A., Cohlberg, J. A., Schiller, D. L., Hatzfeld, M., and Franke, W. W., 1984, Heterotypic tetramer (A2D2) complex of non-epidermal keratins isolated from the cytoskeletons of rat hepatocytes and hepatoma cells, J. Mol. Biol. 178: 365.

    Article  PubMed  CAS  Google Scholar 

  • Renner, W., Franke, W. W., Schmid, E., Geisler, N., Weber, K., and Mandelkow, E., 1981, Reconstitution of intermediate-sized filaments from denatured monomeric vimentin, J. Mol. Biol. 149: 285.

    Article  PubMed  CAS  Google Scholar 

  • Rueger, D-C., Huston, J. S., Dahl, D., and Bignami, A., 1979, Formation of 100 Å filaments from purified glial fibrillary acidic protein in vitro, J. Mol. Biol. 137: 53.

    Article  Google Scholar 

  • Sharp, G., Shaw, G., and Weber, K., 1982, Immunoelectronmicroscopical localization of the three neurofilament triplet proteins along neurofilaments of cultured dorsal root ganglion neurones, Exp. Cell Res. 137: 403.

    Article  PubMed  CAS  Google Scholar 

  • Skerrow, D., Matoltsy, A. G., and Matoltsy, M. N., 1973, Isolation and characterization of the α- helical regions of epidermal prekeratin,J. Biol. Chem. 248:4820.

    CAS  Google Scholar 

  • Sodek, J., Hodges, R. S., Smillie, L. B., and Jurasek, L., 1972, Amino-acid sequence of rabbit skeletal tropomyosin and its coiled-coil structure, Proc. Natl. Acad. Sci. USA 69: 3800.

    Article  PubMed  CAS  Google Scholar 

  • Sparrow, L. G., and Inglis, A. S., 1980, Characterization of the cyanogen bromide peptides of component 7c, a major microfibrillar protein from wool in: Proceedings of the 6th Quinquennial International Wool Textile Research Conference, Pretoria, Vol. 2, pp. 237 –246.

    Google Scholar 

  • Steinert, P. M., 1978, Structure of the three-chain unit of the bovine epidermal keratin filament, J. Mol. Biol. 123: 49.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Idler, W. W., and Zimmermann, S. B., 1976, Self-assembly of bovine epidermal keratin filaments in vitro, J. Mol. Biol. 108: 547.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Zimmermann, S. B., Starger, J. M., and Goldman, R. D., 1978, Ten-nanometer filaments of hamster BHK-21 cells and epidermal keratin filaments have similar structures, Proc. Natl. Acad. Sci. USA 75: 6098.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Idler, W. W., and Goldman, R. D., 1980, Intermediate filaments of baby hamster kidney (BHK-21) cells and bovine epidermal keratinocytes have similar ultrastructures and subunit structures, Proc. Natl. Acad. Sci. USA 77: 4534.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Idler, W. W., Cabral, F., Gottesman, M. M., and Goldman, R. D., 1981, In vitro assembly of homopolymer and copolymer filaments from intermediate filament subunits of muscle and fibroblastic cells, Proc. Natl. Acad. Sci. USA 78: 3692.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C., 1983, Complete amino acid sequence of a mouse epidermal keratin subunit and implications for the structure of intermediate filaments, Nature 302: 794.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P. M., Parry, D. A. D., Racoosin, E. L., Joller, W. W., Steven, A. C., Trus, B. L., and Roop, D. R., 1984, The complete cDNA and deduced amino acid sequences of a type II mouse epidermal keratin of 60,000 Da: Analysis of the sequence differences between type I and type II keratins, Proc. Natl. Acad. Sci. USA 81: 5709.

    Article  PubMed  CAS  Google Scholar 

  • Steven, A. C., Wall, J., Hainfield, J. F., and Steinert, P. M., 1982, Structure of fibroblastic intermediate filaments: analysis by scanning transmission electron microscopy, Proc. Natl. Acad. Sci. USA 79: 3101.

    Article  PubMed  CAS  Google Scholar 

  • Steven, A. C., Hainfield, J. F., Trus, B. L., Wall, J. S., and Steinert, P. M., 1983, The distribution of mass in heteropolymer intermediate filaments assembled in vitro, J. Cell Biol. 97: 1939.

    Article  PubMed  CAS  Google Scholar 

  • Stromer, M. H., Huiatt, T. W., Richardson, F. L., and Robson, R. M., 1981, Disassembly of synthetic 10-nm filaments from smooth muscle into protofilaments, Eur. J. Cell Biol. 25: 136.

    PubMed  CAS  Google Scholar 

  • Traub, P., and Vorgias, C. E., 1983, Involvement of the N-terminal polypeptide of vimentin in the formation of intermediate filaments, J. Cell Sci. 63: 43.

    PubMed  CAS  Google Scholar 

  • Traub, P., and Vorgias, C. E., 1984, Differential effect of arginine modification with 1,2- cyclohexanedione on the capacity of vimentin and desmin to assemble into intermediate filaments and to bind to nucleic acids, J. Cell Sci. 65: 1.

    PubMed  CAS  Google Scholar 

  • Weber, K., and Geisler, N., 1982, The structural relation between intermediate filament proteins in living cells and the a-keratins of sheep wool, EMBO J. 1: 1155.

    PubMed  CAS  Google Scholar 

  • Weber, K., and Geisler, N., 1983, Proteolysis of the neurofilament 68 kDa protein explains several previously described brain proteins of unique composition and high acidity, FEBS Lett. 164: 129.

    Article  PubMed  CAS  Google Scholar 

  • Weber, K., and Geisler, N., 1984, Intermediate filaments—From wool a-keratins to neurofilaments: a structural overview, in: Cancer Cells, Vol. 1, The Transformed Phenotype, pp. 153–159, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Willard, M. B., and Simon, C., 1981, Antibody decoration of neurofilaments, J. Cell Biol. 89: 198.

    Article  PubMed  CAS  Google Scholar 

  • Woods, E. F., and Gruen, L. C., 1981, Structural studies on the microfibrillar proteins of wool: characterization of the a-helix-rich particle produced by chymotryptic digestion, Austr. J. Biol. Sci. 34: 515

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Geisler, N., Weber, K. (1986). Structural Aspects of Intermediate Filaments. In: Shay, J.W. (eds) Cell and Molecular Biology of the Cytoskeleton. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2151-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2151-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9269-2

  • Online ISBN: 978-1-4613-2151-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics