Connectivity of the Primate Sensory-Motor Cortex

  • Edward G. Jones
Part of the Cerebral Cortex book series (CECO, volume 5)


The words “sensory-motor cortex” in this chapter’s title may appear unusual in these days of increasingly finer analysis when it would be more customary to devote individual chapters to each component of this large cortical region. The idea that somatosensory and motor cortex should form some kind of functional unit is now by no means a popular one. The reason for this is hard to determine, as it is difficult to conceive that any motor act is entirely without accompanying sensory phenomena [even allowing for the fact that a certain proportion of motor cortex neurons may not be subjected to immediate sensory feedback (Evarts and Fromm, 1977; see Evarts, this volume)]. Similarly, the involvement of parietal cortex in the analysis of spatial relations and the body image (Mountcastle, 1975) and of premotor cortex in planning movement strategies (Roland et al., 1980), including those into extrapersonal space, implies some kind of relationship between these two and associations between them and somatosensory and primary motor cortex. In view of all this, it does not seem inappropriate to ask: what are the pathways to and from sensory, motor, and premotor cortex; at what levels do they come together; what are the routes of intercommunication between the three cortical regions, and the routes of outflow from them; how does their intrinsic organization reflect the neural processing occurring within them? On account of the functional baseline alluded to above having its origins in human behavior, this chapter will be devoted entirely to the examination of connectivity in the monkey brain. Considerations of many of the comparable features of organization in the brains of cats and rats will be found in the chapters by Zarzecki, Wise and Donoghue, Dykes and Ruest, and Burton.


Motor Cortex Receptive Field Supplementary Motor Area Thalamic Input Ventral Posterior Medial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albe-Fessard, D., and Liebeskind, J., 1966, Origines des messages somato-sensitifs activant le cellules du cortex motor chez le singe, Exp. Brain Res. 1:127–146.PubMedGoogle Scholar
  2. Allen, G. I., Gilbert, P. F. C, Marini, R., Schultz, W., and Yin, T. C. T., 1977, Integration of cerebral and peripheral inputs by interpositus neurons in monkey, Exp. Brain Res. 27:81–99.PubMedGoogle Scholar
  3. Andersen, R. A., Asanuma, C., and Cowan, W. M., 1985, Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: A study using retrogradely transported fluorescent dyes, J. Comp. Neurol. 232:443–455.PubMedGoogle Scholar
  4. Andersson, S. A., Landgren, S., and Wolsk, D., 1966, The thalamic relay and cortical projection of group I muscle afferents from the forelimb of the cat, J. Physiol. (London) 183:576–591.Google Scholar
  5. Applebaum, A. E., Beall, J. E., Foreman, R. D., and Willis, W. D., 1975, Organization and receptive fields of primate spinothalamic tract neurons, J. Neurophysiol. 38:572–586.PubMedGoogle Scholar
  6. Applebaum, A. E., Leonard, R. B., Kenshalo, D. R., Jr., Martin, R. F., and Willis, W. D., 1979, Nuclei in which functionally identified spinothalamic tract neurons terminate, J. Comp. Neurol. 188:575–585.PubMedGoogle Scholar
  7. Asanuma, C., Thach, W. T., and Jones, E. G., 1983a, Cytoarchitectonic delineation of the ventral lateral thalamic region in monkeys, Brain Res. Rev. 5:219–235.Google Scholar
  8. Asanuma, C., Thach, W. T., and Jones, E. G., 1983b, Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey, Brain Res. Rev. 5:267–297.Google Scholar
  9. Asanuma, C., Thach, W. T., and Jones, E. G., 1983c, Distribution of cerebellar terminations and their relation to other afferent terminations in the thalamic ventral lateral region of the monkey, Brain Res. Rev. 5:237–265.Google Scholar
  10. Asanuma, H., Larsen, K. D., and Yumiya, H., 1979, Receptive fields of thalamic neurons projecting to the motor cortex in the cat, Brain Res. 172:217–228.PubMedGoogle Scholar
  11. Asanuma, H., Larsen, K., and Yumiya, H., 1980, Peripheral input pathways to the monkey motor cortex, Exp. Brain Res. 38:349–355.PubMedGoogle Scholar
  12. Beckstead, R. M., Domesick, V. B., and Nauta, W. J. H., 1979, Efferent connections of the substantia nigra and ventral tegmental area in the rat, Brain Res. 175:191–218.PubMedGoogle Scholar
  13. Berkley, K. J., 1980, Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon, J. Comp. Neurol. 193:283–317.PubMedGoogle Scholar
  14. Berkley, K. J., 1983, Spatial relationships between the terminations of sensory-motor pathways in the rostral brainstem of cats and monkeys. II. Cerebellar projections compared with those of the ascending somatic sensory pathways in lateral diencephalon, J. Comp. Neurol. 220:229–251.PubMedGoogle Scholar
  15. Brinkman, J., and Porter, R., 1979, Supplementary motor area of the monkey: Activity of neurons during performance of a learned motor task, J. Neurophysiol. 42:681–709.PubMedGoogle Scholar
  16. Brinkman, J., Bush, B. M., and Porter, R., 1978, Deficient influences of peripheral stimuli on precentral neurones in monkeys with dorsal column lesions, J. Physiol. (London) 276:27–48.Google Scholar
  17. Brinkman, J., Colebatch, J. G., Porter, R., and York, D. H., 1986, Responses of precentral cells during cooling of postcentral cortex in conscious monkeys, Exp. Brain Res. (in press).Google Scholar
  18. Brodal, P. 1978, The corticopontine projection in the rhesus monkey: Origin and principles of organization, Brain 101:251–283.PubMedGoogle Scholar
  19. Brodmann, K., 1903, Beiträge zur histologischen Lokalisation der Grosshirnrinde. Dritte Mitteilung: Die Rindenfelder der niederen Affen, J. Psychol. Neurol. 4:177–226.Google Scholar
  20. Brodmann, K., 1909, Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, Barth, Leipzig, p. 324.Google Scholar
  21. Bullier, J., and Henry, G. H., 1979, Laminar distribution of first-order neurons and afferent terminals in cat striate cortex, J. Neurophysiol. 42:1271–1281.PubMedGoogle Scholar
  22. Burchfiel, J. L., and Duffy, E. H., 1972, Muscle afferent input to single cells in primate somatosensory cortex, Brain Res. 45:241–249.PubMedGoogle Scholar
  23. Burton, H., and Jones, E. G., 1976, The posterior thalamic region and its cortical projection in New World and Old World monkeys, J. Comp. Neurol. 168:249–301.PubMedGoogle Scholar
  24. Carlson, M., 1981, Characteristics of sensory deficits following lesions of Brodmann’s areas 1 and 2 in the postcentral gyrus of Macaca mulatta, Brain Res. 204:424–430.Google Scholar
  25. Carpenter, M. B., Nakano, K., and Kim, R., 1976, Nigrothalamic projections in the monkey demonstrated by autoradiographic technics, J. Comp. Neurol. 165:401–415.PubMedGoogle Scholar
  26. Carreras, M., and Andersson, S. A., 1963, Functional properties of neurons of the anterior ectosylvian gyrus of the cat, J. Neurophysiol 26:100–126.PubMedGoogle Scholar
  27. Catsman-Berrevoets, C. E., and Kuypers, H. G. J. M., 1978, Differential laminar distribution of corticothalamic neurons projecting to the VL and the center median: An HRP study in the cynomolgus monkey, Brain Res. 154:359–365.PubMedGoogle Scholar
  28. Clemo, H. R., and Stein, B. E., 1984, Topographic organization of somatosensory corticotectal influences in cat, J. Neurophysiol 51:843–858.PubMedGoogle Scholar
  29. Conley, M., and Jones, E. G., 1984, Laminar terminations of individual afferent axons in SI cortex in Macaca, Soc. Neurosci. Abstr. 10:495.Google Scholar
  30. Costanzo, R. M., and Gardner, E. P., 1980, A quantitative analysis of responses of directional-sensitive neurons in somatosensory cortex of awake monkeys, J. Neurophysiol 43:1319–1341.PubMedGoogle Scholar
  31. Coulter, J. D., and Jones, E. G., 1977, Different distribution of corticospinal projections from individual cytoarchitectonic fields in the monkey, Brain Res. 129:335–340.PubMedGoogle Scholar
  32. DeFelipe, J., and Jones, E. G., 1985, Vertical organization of GABA accumulating intrinsic neuronal systems in monkey cerebral cortex, J. Neurosci. 5: 3246–3260.PubMedGoogle Scholar
  33. DeFelipe, J., Hendry, S. H. C., Jones, E. G., and Schmechel, D. E., 1985, Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory-motor cortex, J. Comp. Neurol. 231:363–384.Google Scholar
  34. DeFelipe, J., Conley, M., and Jones, E. G., 1986, Multiple, long-range focal collateralization of axons arising from single neurons in monkey sensory-motor cortex, J. Neurosci. in press.Google Scholar
  35. Devananden, M. S., and Heath, C. D., 1975, A short latency pathway from forearm nerves to area 4 of the baboon’s cerebral cortex, J. Physiol (London) 248:43P-44P.Google Scholar
  36. DeVito, J. L., and Anderson, M. E., 1982, An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta, Exp. Brain Res. 46:107–117.Google Scholar
  37. Dhanarajan, P., Rüegg, D. G., and Wiesendanger, M., 1977, An anatomical investigation of the corticopontine projection in the primate (Saimiri sciureus): The projection from motor and somatosensory areas, Neuroscience 2:913–922.Google Scholar
  38. Dreher, B., Fukada, Y., and Rodieck, R. W., 1976, Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of Old World primates, J. Physiol (London) 258:433–452.Google Scholar
  39. Dykes, R. W., Landry, P., Metherate, R., and Hicks, T. P., 1984, Functional role of GABA in cat primary somatosensory cortex: Shaping receptive fields of cortical neurons, J. Neurophysiol 52:1066–1093.PubMedGoogle Scholar
  40. Ebner, F. F., and Myers, R. E., 1962, Commissural connections in the neocortex of monkey, Anat. Rec. 142:229.Google Scholar
  41. Eccles, J. C., Sabah, N. H., and Täboříková, H., 1974, The pathways responsible for excitation and inhibition of fastigial neurones, Exp. Brain Res. 19:78–99.PubMedGoogle Scholar
  42. Endo, K., Araki, T., and Yagi, N., 1973, The distribution and pattern of axon branching of pyramidal tract cells, Brain Res. 57:484–491.PubMedGoogle Scholar
  43. Evarts, E. V., 1981, Role of motor cortex in voluntary movement in primates, in: Handbook of Physiology, Section I, Volume II (V. B. Brooks and W. T. Thach eds.), American Physiological Society, Bethesda, pp. 1083–1120.Google Scholar
  44. Evarts, E. V., and Fromm, C., 1977, Sensory responses in motor cortex neurons during precise motor control, Neurosci. Lett. 5:267–272.PubMedGoogle Scholar
  45. Evarts, E. V., Fromm, C., Kroller, J., and Jennings, V. A., 1983, Motor cortex control of finely graded forces, J. Neurophysiol 49:1199–1215.Google Scholar
  46. Faull, R. L. M., and Carman, J. B., 1968, Ascending projections of the substantia nigra in the rat, J. Comp. Neurol 132:73–92.PubMedGoogle Scholar
  47. Faull, R. L. M., and Mehler, W. R., 1978, The cells of origin of nigrotectal, nigrothalamic and nigrostriatal projections in the rat, Neuroscience 3:989–1002.PubMedGoogle Scholar
  48. Ferrington, D. G., and Rowe, M., 1980, Differential contributions to coding of cutaneous vibratory information by cortical somatosensory areas I and II, J. Neurophysiol 43:310–331.PubMedGoogle Scholar
  49. Ferster, D., and LeVay, S., 1978, The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat, J. Comp. Neurol 182:923–944.PubMedGoogle Scholar
  50. Fetz, E. E., and Baker, M. A., 1969, Response properties of precentral neurons in awake monkeys, Physiologist 12:223.Google Scholar
  51. Fetz, E. E., Finocchio, V., Baker, M. A., and Soso, M. J., 1980, Sensory and motor responses of precentral cortex cells during comparable passive and active joint movements, J. Neurophysiol 43:1070–1089.PubMedGoogle Scholar
  52. Friedman, D. P., 1983, Laminar patterns of termination of cortico-cortical afferents in the somatosensory system, Brain Res. 273:147–151.PubMedGoogle Scholar
  53. Friedman, D. P., and Jones, E. G., 1980, Focal projection of electrophysiologically defined groupings of thalamic cells on the monkey somatic sensory cortex, Brain Res. 191:249–252.PubMedGoogle Scholar
  54. Friedman, D. P., and Jones, E. G., 1981, Thalamic input to areas 3a and 2 in monkeys, J. Neurophysiol 45:59–85.PubMedGoogle Scholar
  55. Friedman, D. P., Jones, E. G., and Burton, H., 1980, Representation pattern in the second somatic sensory area of the monkey cerebral cortex, J. Comp. Neurol 192:21–41.PubMedGoogle Scholar
  56. Friedman, D. P., Murray, E. A., and Mishkin, M., 1982, Cortico-limbic pathway for touch: Connections via somato-sensory cortical fields in the lateral sulcus of the monkey, Soc. Neurosci. Abstr. 8:38.Google Scholar
  57. Friedman, D. P., Murray, E. A., and O’Neill, J. B., 1983, Thalamic connectivity of the somato-sensory cortical fields of the lateral sulcus of the monkey, Soc. Neurosci. Abstr. 9:921.Google Scholar
  58. Fromm, C., Wise, S. P., and Evarts, E. V., 1984, Sensory response properties of pyramidal tract neurons in the precentral motor cortex and postcentral gyrus of the rhesus monkey, Exp. Brain Res. 54:177–185.PubMedGoogle Scholar
  59. Gardner, E. P., and Costanzo, R. M., 1981, Properties of kinesthetic neurons in somatosensory cortex of awake monkeys, Brain Res. 214:301–320.PubMedGoogle Scholar
  60. Gilbert, C. D., 1983, Microcircuitry of the visual cortex, Annu. Rev. Neurosci. 6:217–248.PubMedGoogle Scholar
  61. Gilbert, C. D., and Wiesel, T. N., 1981, Laminar specialization and intracortical projections in cat primary visual cortex, in: The Cerebral Cortex(F. O. Schmitt and F. G. Worden, eds.), MIT Press, Cambridge, Mass., pp. 211–238.Google Scholar
  62. Goldman-Rakic, P. S., and Schwartz, M. L., 1982, Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates, Science 216:755–757.PubMedGoogle Scholar
  63. Gottschaldt, K.-M., Vahle-Hinz, C., and Hicks, T. P., 1983, Electrophysiological and microphar- macological studies on mechanisms of input—output transformations in single neurones of the somato-sensory thalamus, in: Somatosensory Integration in the Thalamus(G. Macchi, A. Rustioni, and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 199–216.Google Scholar
  64. Graybiel, A. M., Ragsdale, C. W., Jr., Yoneoka, E. S., and Elde, R. P., 1981, An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining, Neuroscience 6:377–398.PubMedGoogle Scholar
  65. Haight, J. R., 1972, The general organization of somatotopic projections to SII cerebral neocortex in the cat, Brain Res. 44:483–502.PubMedGoogle Scholar
  66. Harvey, R. J., Porter, R., and Rawson, J. A., 1979, Discharges of intracerebellar nuclear cells in monkeys, J. Physiol (London) 297:559–580.Google Scholar
  67. Heath, C. J., and Jones, E. G., 1971, An experimental study of ascending connections from the posterior group of thalamic nuclei in the cat, J. Comp. Neurol 141:397–426.PubMedGoogle Scholar
  68. Heath, C. J., Hore, J., and Phillips, C. G., 1976, Inputs from low threshold muscle and cutaneous afferents of hand and forearm to areas 3a and 3b of baboon’s cerebral cortex, J. Physiol (London) 257:199–227.Google Scholar
  69. Hellweg, F.-C., Schultz, W., and Creutzfeldt, O. D., 1977, Extracellular and intracellular recordings from cat’s cortical whisker projection area: Thalamocortical response transformation, J. Neurophysiol 40:463–479.PubMedGoogle Scholar
  70. Hendry, S. H. C., and Jones, E. G., 1981, Sizes and distributions of intrinsic neurons incorporating tritiated GABA in monkey sensory-motor cortex, J. Neurosci. 1:390–408.PubMedGoogle Scholar
  71. Hendry, S. H. C., and Jones, E. G., 1983a, Thalamic inputs to identified commissural neurons in the monkey somatic sensory cortex, J. Neurocytol. 12:299–316.PubMedGoogle Scholar
  72. Hendry, S. H. C., and Jones, E. G., 1983b, The organization of pyramidal and nonpyramidal cell dendrites in relation to thalamic afferent terminations in the monkey somatic sensory cortex, J . Neurocytol. 12:278–298.Google Scholar
  73. Hendry, S. H. C., Jones, E. G., and Graham, J., 1979, Thalamic relay nuclei for cerebellar and certain related fiber systems in the cat, J. Comp. Neurol 185:679–714.PubMedGoogle Scholar
  74. Hendry, S. H. C., Houser, C. R., Jones, E. G., and Vaughn, J. E., 1981, Synaptic relations of GABAergic intrinsic neurons in monkey somatic sensory cortex, Soc. Neurosci. Abstr. 7:833.Google Scholar
  75. Hendry, S. H. C., Jones, E. G., and Beinfeld, M. C., 1983, Cholecystokinin-immunoreactive neurons in rat and monkey cerebral cortex make symmetric synapses and have intimate associations with blood vessels, Proc. Natl Acad. Sci. USA 80:2400–2404.PubMedGoogle Scholar
  76. Hendry, S. H. C., Jones, E. G., DeFelipe, J., Schmechel, D., Brandon, C., and Emson, P. C., 1984, Neuropeptide containing neurons of the cerebral cortex are also GABAergic, Proc. Natl Acad. Sci. USA 81:6526–6530.PubMedGoogle Scholar
  77. Herkenham, M., and Pert, C. B., 1981, Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum, Nature 291:415–418.PubMedGoogle Scholar
  78. Hore, J., Preston, J. B., Durkovic, R. G., and Cheney, P. D., 1976, Response of cortical neurons (areas 3a and 4) to ramp stretch of hindlimb muscles in the baboon, J. Neurophysiol 39:484–500.PubMedGoogle Scholar
  79. Horne, M. K., and Porter, R., 1980, The discharges during movement of cells in the ventrolateral thalamus of the conscious monkey, J. Physiol (London) 304:349–372.Google Scholar
  80. Horne, M. K., and Tracey, D. J., 1979, The afferents and projections of the ventroposterolateral thalamus in the monkey, Exp. Brain Res. 36:129–141.PubMedGoogle Scholar
  81. Houser, C., Hendry, S. H. C., Jones, E. G., and Vaughn, J. E., 1983, Synaptic organization of immunocytochemically identified GABAergic neurons in monkey sensory-motor cortex, J. Neurocytol 12:617–638.PubMedGoogle Scholar
  82. Hyvärinen, J., and Poranen, A., 1978, Movement-sensitive and direction and orientation-selective cutaneous receptive fields in the hand area of the post-central gyrus in monkeys, J. Physiol (London) 283:523–538.Google Scholar
  83. Iwamura, Y., and Tanaka, M., 1978, Postcentral neurons in hand region of area 2: Their possible role in the form discrimination of tactile objects, Brain Res. 150:662–666.PubMedGoogle Scholar
  84. Iwamura, Y., Tanaka, M., Hikosaka, O., 1980, Overlapping representation of fingers in the somatosensory cortex (area 2) of the conscious monkey, Brain Res. 197:516–520.PubMedGoogle Scholar
  85. Iwamura, Y., Tanaka, M., Sakamoto, M., and Hikosaka, O., 1983a, Functional subdivisions representing different finger regions in area 3 of the first somatosensory cortex of the conscious monkey, Exp. Brain Res. 51:315–326.Google Scholar
  86. Iwamura, Y., Tanaka, M., Sakamoto, M., and Hikosaka, O., 1983b, Converging patterns of finger representation and complex response properties of neurons in area 1 of the first somatosensory cortex in the conscious monkey, Exp. Brain Res. 51:327–337.Google Scholar
  87. Jankowska, E., Padel, Y., and Tanaka, R., 1975, Projections of pyramidal tract cells to motoneurons innervating hindlimb muscles in the monkey, J. Physiol. (London) 249:637–667.Google Scholar
  88. Jennings, V. A., Lamour, Y., Solis, H., and Fromm, C., 1983, Somatosensory cortex activity related to position and force, J. Neurophysiol. 49:1216–1229.PubMedGoogle Scholar
  89. Jenny, A. B., 1979, Commissural projections of the cortical hand motor area in monkeys, J. Comp. Neurol 188:137–146.PubMedGoogle Scholar
  90. Jones, E. G., 1975a, Lamination and differential distribution of thalamic afferents within the sensory- motor cortex of the squirrel monkey, J. Comp. Neurol 160:167–204.PubMedGoogle Scholar
  91. Jones, E. G., 1975b, Some aspects of organization of the thalamic reticular complex, J. Comp. Neurol 162:285–308.PubMedGoogle Scholar
  92. Jones, E. G., 1975c, Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey, J. Comp. Neurol 160:205–267.PubMedGoogle Scholar
  93. Jones, E. G., 1981a, Functional subdivision and synaptic organization of the mammalian thalamus, in: International Review of Physiology: Neurophysiology IV(R. Porter, ed.), University Park Press, Baltimore, pp. 173–245.Google Scholar
  94. Jones, E. G. 1981b, Anatomy of cerebral cortex: Columnar input—output organization, in: The Organization of the Cerebral Cortex(F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, Mass., pp. 199–236.Google Scholar
  95. Jones, E. G., 1983a, The columnar basis of cortical circuitry, in: Clinical Neurosciences, Volume 5 (R. N. Rosenberg and W. D. Willis, eds.), Churchill/Livingstone, London, pp. 357–384.Google Scholar
  96. Jones, E. G., 1983b, Lack of collateral thalamocortical projection to fields of the first somatic sensory cortex in monkeys, Exp. Brain Res. 52:375–384.PubMedGoogle Scholar
  97. Jones, E. G., 1984a, Laminar distribution of output cells, in: Cerebral Cortex, Volume I (A. Peters and E. G.Jones, eds.), Plenum Press, New York, pp. 521–553.Google Scholar
  98. Jones, E. G., 1984b, Organization of the thalamocortical complex and its relation to sensory processes, in: Handbook of PhysiologySection I, Volume III (I. Darian-Smith, ed.), American Physiological Society, Washington, D.C., pp. 149–212.Google Scholar
  99. Jones, E. G., 1984c, Identification and classification of intrinsic circuit elements in the neocortex, in: Dynamic Aspects of Neocortical Organization(G. M. Edelman, W. M. Cowan, and W. E. Gall, eds.), Wiley, New York, pp. 7–40.Google Scholar
  100. Jones, E. G., 1985, The Thalamus, Plenum Press, New York.Google Scholar
  101. Jones, E. G., and Burton, H., 1976, Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates, J . Comp. Neurol 168:197–247.PubMedGoogle Scholar
  102. Jones, E. G., and Friedman, D. P., 1982, Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex, J. Neurophysiol 48:521–544.PubMedGoogle Scholar
  103. Jones, E. G., and Hendry, S. H. C., 1980, Distribution of callosal fibers around the hand representations in monkey somatic sensory cortex, Neurosci. Lett. 19:167–172.PubMedGoogle Scholar
  104. Jones, E. G., and Hendry, S. H. C., 1984, Basket cells, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 309–336.Google Scholar
  105. Jones, E. G., and Leavitt, R. Y., 1974, Retrograde axonal transport and the demonstration of nonspecific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey, J. Comp. Neurol 154:(4):349–378.PubMedGoogle Scholar
  106. Jones, E. G., and Porter, R., 1980, What is area 3a?, Brain Res. Rev. 2:1–43.Google Scholar
  107. Jones, E. G., and Powell, T. P. S., 1969a, Connexions of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral cortical connexions, Brain 92:477–502.PubMedGoogle Scholar
  108. Jones, E. G., and Powell, T. P. S., 1969b, Connexions of the somatic sensory cortex of the rhesus monkey. II. Contralateral cortical connexions, Brain 92:717–730.PubMedGoogle Scholar
  109. Jones, E. G., and Powell, T. P. S., 1970, Connexions of the somatic sensory cortex of the rhesus monkey. III. Thalamic connexions, Brain 93:37–56.PubMedGoogle Scholar
  110. Jones, E. G., and Wise, S. P., 1977, Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys, J. Comp. Neurol 175:391–438.PubMedGoogle Scholar
  111. Jones, E. G., Burton, H., and Porter, R., 1975, Commissural and cortico-cortical “columns” in the somatic sensory cortex of primates, Science 190:572–574.PubMedGoogle Scholar
  112. Jones, E. G., Coulter, J. D., Burton, H., and Porter, R., 1977, Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys, J. Comp. Neurol. 173:53–80.PubMedGoogle Scholar
  113. Jones, E. G., Coulter, J. D., and Hendry, S. H. C., 1978, Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys, J. Comp. Neurol. 181:291–348.PubMedGoogle Scholar
  114. Jones, E. G., Coulter, J. D., and Wise, S. P., 1979a, Commissural columns in the sensory-motor cortex of monkeys, J. Comp. Neurol 188:113–136.PubMedGoogle Scholar
  115. Jones, E. G., Wise, S. P., and Coulter, J. D., 1979b, Differential thalamic relationships of sensory- motor and parietal cortical fields in monkeys, J. Comp. Neurol 183:833–882.PubMedGoogle Scholar
  116. Jones, E. G., Friedman, D. P., and Hendry, S. H. C., 1982, Thalamic basis of place- and modality- specific columns in monkey somatosensory cortex: A correlative anatomical and physiological study, J. Neurophysiol 48:545–568.PubMedGoogle Scholar
  117. Jones, E. G., Hendry, S. H. C., and Brandon, C., 1986, Cytochrome oxidase staining reveals functional organization of monkey somatosensory thalamus, Exp. Brain Res. in press.Google Scholar
  118. Juliano, S. L., Hand, P. J., and Whitsel, B. L., 1981, Patterns of increased metabolic activity in somatosensory cortex of monkeys Macaca fascicularis, subjected to controlled cutaneous stimulation: A 2-deoxyglucose study, J. Neurophysiol 46:1260–1284.PubMedGoogle Scholar
  119. Kaas, J. H., Nelson, R. J., Sur, M., Lin, C.-S., and Merzenich, M. M., 1979, Multiple representations of the body within the primary somatosensory cortex of primates, Science, 204:521–523.PubMedGoogle Scholar
  120. Kalil, K., 1981, Projections of the cerebellar and dorsal column nuclei upon the thalamus of the rhesus monkey, J. Comp. Neurol 195:25–50.PubMedGoogle Scholar
  121. Kaplan, E., and Shapley, R. M., 1982, X and Y cells in the lateral geniculate nucleus of macaque monkeys, J. Physiol (London) 330:125–143.Google Scholar
  122. Kemp, J. M., and Powell, T. P. S., 1971, The connexions of the striatum and globus pallidus: Synthesis and speculation, Philos. Trans. R. Soc. London Ser. B 262:441–457.Google Scholar
  123. Kenshalo, D. R., Jr., and Isensee, O., 1983, Responses of primate SI cortical neurons to noxious stimuli, J. Neurophysiol 50:1479–1496.PubMedGoogle Scholar
  124. Kenshalo, D. R., Jr., Giesler, G. J., Jr., Leonard, R. B., and Willis, W. D., 1980, Responses of neurons in primate ventral posterior lateral nucleus to noxious stimuli, J. Neurophysiol 43:1594–1614.PubMedGoogle Scholar
  125. Killackey, H. P., Gould, H. J., Cusick, C. G., Pons, T. P., and Kaas, J. H., 1983, The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of New and Old World monkeys, J. Comp. Neurol 219:384–419.PubMedGoogle Scholar
  126. Kim, R., Nakano, K., Jayaraman, A., and Carpenter, M. B., 1976, Projections of the globus pallidus and adjacent structures: An autoradiographic study in the monkey, J. Comp. Neurol 169:263–290.PubMedGoogle Scholar
  127. Krnjević, K., 1984, Neurotransmitters of the cerebral cortex: A general account, in: Cerebral Cortex, Volume 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 39–62.Google Scholar
  128. Kruger, L., 1956, Characteristics of the somatic afferent projection to the precentral cortex in the monkey, Am. J. Physiol 186:475–482.PubMedGoogle Scholar
  129. Künzle, H., 1975, Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia: An autoradiographic study in Macaca fascicularis, Brain Res. 88:195–210.Google Scholar
  130. Kuypers, H. G. J. M., and Brinkman, J., 1970, Precentral projections to different parts of the spinal intermediate zone in the rhesus monkey, Brain Res. 24:29–48.PubMedGoogle Scholar
  131. Kuypers, H. G. J. M., and Lawrence, D. G., 1967, Cortical projections to the red nucleus and the brain stem in the rhesus monkey, Brain Res. 4:151–188.PubMedGoogle Scholar
  132. Lange, W., Büttner-Ennever, J. A., and Büttner, U., 1979, Vestibular projections to the monkey thalamus: An autoradiographic study, Brain Res. 177:3–18.Google Scholar
  133. Lassek, A. M., 1941, The pyramidal tract of the monkey, J. Comp. Neurol 74:192–202.Google Scholar
  134. Le Gros Clark, W. E., and Boggon, R. H., 1935, The thalamic connections of the parietal and frontal lobes of the brain in the monkey, Philos. Trans. R. Soc. London Ser. B 224:313–359.Google Scholar
  135. Le Gros Clark, W. E., and Powell, T. P. S., 1953, On the thalamo-cortical connexions of the general sensory cortex of Macaca, Proc. R. Soc. London Ser. B 141:467–487.Google Scholar
  136. Lemon, R. N., and Porter, R., 1976, Afferent input to movement-related precentral neurones in conscious monkeys, Proc. R. Soc. London Ser. B 194:313–339.Google Scholar
  137. Lemon, R. N., and van der Burg, J., 1979, Short-latency peripheral inputs to thalamic neurones projecting to the motor cortex in the monkey, Exp. Brain Res. 36:445–462.PubMedGoogle Scholar
  138. Lemon, R. N., Hanby, J. A., and Porter, R., 1976, Relationship between the activity of precentral neurons during active and passive movements in conscious monkeys, Proc. R. Soc. London Ser. B 197:341–373.Google Scholar
  139. Livingstone, M. S., and Hubel, D. H., 1982, Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex, Proc. Natl. Acad. Sci. USA 79:6098–6101.PubMedGoogle Scholar
  140. Lucier, G. E., Rüegg, D. C., and Wiesendanger, M., 1975, Responses of neurones in motor cortex and in area 3A to controlled stretches of forelimb muscles in cebus monkeys, J. Physiol. (London) 251:833–853.Google Scholar
  141. Macpherson, J. M., Rasmusson, D. D., and Murphy, J. T., 1980, Activities of neurons in “motor” thalamus during control of limb movement in the primate, J. Neurophysiol. 44:11–28.PubMedGoogle Scholar
  142. Maendly, R., Rüegg, D. G., Wiesendanger, M., Wiesendanger, R., Lagowska, J., and Hess, B., 1981, Thalamic relay for group I muscle afferents of forelimb nerves in the monkey, J. Neurophysiol. 46:901–917.PubMedGoogle Scholar
  143. Malis, L. I., Pribram, K. H., and Kruger, L., 1953, Action potentials in “motor” cortex evoked by peripheral nerve stimulation, J. Neurophysiol. 16:161–167.PubMedGoogle Scholar
  144. Manson, J., 1969, The somatosensory cortical projections of single nerve cells in the thalamus of the cat, Brain Res. 12:489–492.PubMedGoogle Scholar
  145. Marsden, C. D., Merton, P. A., and Morton, H. B., 1973, Is the human stretch reflex cortical rather than spinal?, Lancet 1:759–761.PubMedGoogle Scholar
  146. Marsden, C. D., Merton, P. A., Morton, H. B., and Adam, J., 1977, The effect of posterior column lesions on sense responses from the human long thumb flexor, Brain 100:185–200.PubMedGoogle Scholar
  147. Mehler, W. R., 1971, Idea of a new anatomy of the thalamus, J. Psychiatr. Res. 8:203–217.PubMedGoogle Scholar
  148. Mehler, W. R., and Nauta, W. J. H., 1974, Connections of the basal ganglia and of the cerebellum, Confin. Neurol. 36:205–222.PubMedGoogle Scholar
  149. Mountcastle, V. B., 1984, Central nervous mechanisms in mechanoreceptive sensibility, in: Handbook of Physiology, Section I, Volume III (I. Darian-Smith, ed.), American Physiological Society, Bethesda, pp. 789–876.Google Scholar
  150. Mountcastle, V. B., and Henneman, E., 1952, The representation of tactile sensibility in the thalamus of the monkey, J. Comp. Neurol. 97:409–440.PubMedGoogle Scholar
  151. Mountcastle, V. B., and Powell, T. P. S., 1959, Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination, Bull. Johns Hopkins Hosp. 105:201–232.PubMedGoogle Scholar
  152. Mountcastle, V. B., Poggio, G. F., and Werner, G., 1963, The relation of thalamic cell response to peripheral stimuli varied over an intensive continuum, J. Neurophysiol. 26:807–834.PubMedGoogle Scholar
  153. Mountcastle, V. B., Talbot, W. H., Sakata, H., and Hyvärinen, J., 1969, Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys: Neuronal periodicity and frequency discrimination, J. Neurophysiol. 32:452–484.PubMedGoogle Scholar
  154. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., and Acuna, C., 1975, Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space, J. Neurophysiol. 38:871–908.PubMedGoogle Scholar
  155. Muakkassa, K. F., and Strick, P. L., 1979, Frontal lobe inputs to primate motor cortex: Evidence for four somatotopically organized “premotor” areas, Brain Res. 177:176–182.PubMedGoogle Scholar
  156. Murray, E. A., and Coulter, J. D., 1981a, Organization of corticospinal neurons in the monkey, J. Comp. Neurol. 195:339–365.PubMedGoogle Scholar
  157. Murray, E. A., and Coulter, J. D., 1981b, Supplementary sensory area: The medial parietal cortex in the monkey, in: Cortical Sensory Organization, Volume 1 (C. N. Woolsey, ed.), Humana Press, Clifton, N.J., pp. 167–195.Google Scholar
  158. Nelson, R. J., Sur, M., Felleman, D. J., and Kaas, J. H., 1980, Representations of the body surface in postcentral parietal cortex of Macaca fascicularis, J. Comp. Neurol. 192:611–643.PubMedGoogle Scholar
  159. Olszewski, J., 1952, The Thalamus of the Macaca Mulatta: An Atlas for Use with the Stereotaxic Instrument, Karger, Basel.Google Scholar
  160. Pandya, D. N., and Vignolo, L. A., 1969, Interhemispheric projections of the parietal lobe in the rhesus monkey, Brain Res. 15:49–66.PubMedGoogle Scholar
  161. Paul, R. L., Merzenich, M., and Goodman, H., 1972, Representation of slowly adapting and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann’s areas 3 and 1 of Macaca mulatta, Brain Res. 36:229–249.Google Scholar
  162. Penny, G. R., Itoh, K., and Diamond, I. T., 1982, Cells of different sizes in the ventral nuclei project to different layers of the somatic cortex in the cat, Brain Res. 242:55–65.PubMedGoogle Scholar
  163. Peters, A., and Jones, E. G., 1984, Classification of cortical neurons, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 107–122.Google Scholar
  164. Phillips, C. G., 1969, Motor apparatus of the baboon’s hand, Proc. R. Soc. London Ser. B 173:141–174.Google Scholar
  165. Phillips, C. G., Powell, T. P. S., and Wiesendanger, M., 1971, Projection from low threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex, J. Physiol. (London) 217:419–446.Google Scholar
  166. Poggio, G. F., and Mountcastle, V. B., 1963, The functional properties of ventrobasal thalamic neurons studied in unanesthetized monkeys, J. Neurophysiol. 26:775–806.PubMedGoogle Scholar
  167. Powell, T. P. S., and Mountcastle, V. B., 1959, Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: A correlation of findings obtained in a single unit analysis with cytoarchitecture, Bull. Johns Hopkins Hosp. 105:133–162.PubMedGoogle Scholar
  168. Purpura, D. P., McMurtry, J. G., and Maekawa, K., 1966, Synaptic events in ventrolateral thalamic neurons during suppression of recruiting responses by brain stem reticular stimulation, Brain Res. 1:63–76.PubMedGoogle Scholar
  169. Ramón y Cajal, S., 1909–1911, Histologie du Système Nerveux de l’Homme et des Vertébrés, Maloine, Paris.Google Scholar
  170. Randolph, M., and Semmes, J., 1974, Behavioral consequences of selective subtotal ablations in the postcentral gyrus of Macaca mulatta, Brain Res. 70:55–70.PubMedGoogle Scholar
  171. Roberts, T. S., and Akert, K., 1963, Insular and opercular cortex and its thalamic projection in Macaca mulatta, Schweiz. Arch. Neurol. Neurochir. Psychiatr. 92:1–43.Google Scholar
  172. Robinson, C. J., and Burton, H., 1980a, Somatotopographic organization in the second somatosensory area of M. fascicularis, J. Comp. Neurol. 192:43–68.Google Scholar
  173. Robinson, C. J., and Burton, H., 1980b, Organization of somatosensory receptive fields in cortical areas 7b, retroinsular, postauditory and granular insula of M. fascicularis, J. Comp. Neurol. 192:69–92.Google Scholar
  174. Robinson, C. J., and Burton, H., 1980c, Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis, J. Comp. Neurol. 192:93–108.Google Scholar
  175. Roland, P. E., Larsen, B., Lassen, N. A., and Skinhöj, E., 1980, Supplementary motor area and other cortical areas in organization of voluntary movements in man, J. Neurophysiol. 43:118–136.PubMedGoogle Scholar
  176. Rosén, I., 1969, Excitation of group I activated thalamocortical relay neurons in the cat, J. Physiol. (London) 205:237–255.Google Scholar
  177. Rosén, I., and Asanuma, H., 1972, Peripheral afferent inputs to the forelimb area of the monkey motor cortex: Input—output relations, Exp. Brain Res. 14:257–273.PubMedGoogle Scholar
  178. Royce, G. J., 1982, Laminar origin of neurons which project upon the caudate nucleus: A horseradish perioxidase investigation in the cat, Brain Res. 205:8–29.Google Scholar
  179. Sanderson, K. J., 1971, The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat, J. Comp. Neurol. 143:101–118.PubMedGoogle Scholar
  180. Schell, G. R., and Strick, P. L., 1984, The origin of thalamic inputs to the arcuate premotor and supplementary motor areas, J. Neurosci. 4:539–560.PubMedGoogle Scholar
  181. Schwartz, M. L., and Goldman-Rakic, P. S., 1982, Single cortical neurons have axon collaterals to ipsilateral and contralateral cortex in fetal and adult primates, Nature 299:154–156.PubMedGoogle Scholar
  182. Shanks, M. F., Pearson, R. C. A., and Powell, T. P. S., 1985a, The callosal connexions of the primary somatic sensory cortex in the monkey, Brain Res. Rev. 9:43–66.Google Scholar
  183. Shanks, M. F., Pearson, R. C. A., and Powell, T. P. S., 1985b, The ipsilateral corticocortical connexions between the cytoarchitectonic subdivisions of the primary somatic sensory cortex in the monkey, Brain Res. Rev. 9:67–88.Google Scholar
  184. Sherman, S. M., Wilson, J. R., Kaas, J. H., and Webb, S. V., 1976, X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus), Science 192:475–477.PubMedGoogle Scholar
  185. Shinoda, Y., Yamazaki, M., and Futami, T., 1982, Convergent inputs from the dentate and the interpositus nuclei to pyramidal tract neurons in the motor cortex, Neurosci. Lett. 34:111–115.PubMedGoogle Scholar
  186. Sloper, J. J., and Powell, T. P. S., 1979, An experimental electron microscopic study of afferent connections to the primate motor and somatic sensory cortices, Philos. Trans. R. Soc. London 285:199–226.Google Scholar
  187. Spreafico, R., Whitsel, B. L., Rustioni, A., and McKenna, T. M., 1983, The organization of nucleus ventralis posterolateralis (VPL) of the cat and its relationship to the forelimb representation in cerebral cortical area SI, in: Somatosensory Integration in the Thalamus(G. Macchi, A. Rustioni, and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 289–308.Google Scholar
  188. Stanton, G. B., 1980, Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: An anterograde degeneration study, J. Comp. Neurol. 190:699–733.PubMedGoogle Scholar
  189. Stanton, G. B., Cruce, W. L. R., Goldberg, M. E., and Robinson, D. L., 1977, Some ipsilateral projections to areas PF and PG of the inferior parietal lobule in monkeys, Neurosci. Lett. 6:243–256.PubMedGoogle Scholar
  190. Stein, B. E., Spencer, R. F., and Edwards, S. B., 1983, The origin of somatosensory corticotectal projections in cat, J. Neurophysiol. 50:896–909.PubMedGoogle Scholar
  191. Streit, P., 1980, Selective retrograde labeling indicating the transmitter of neuronal pathways, J. Comp. Neurol. 191:429–463.PubMedGoogle Scholar
  192. Strick, P. L., 1976, Anatomical analysis of ventrolateral thalamic input in primate motor cortex, J. Neurophysiol. 39:1020–1031.PubMedGoogle Scholar
  193. Strick, P. L., and Preston, J. B., 1978, Multiple representations in the primate motor cortex, Brain Res. 154:366–370.PubMedGoogle Scholar
  194. Sur, M., Wall, J. T., and Kaas, J. H., 1981, Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys, Science 212:1059–1061.PubMedGoogle Scholar
  195. Tanji, J., and Wise, S. P., 1981, Submodality distribution in sensorimotor cortex of the unanesthetized monkey, J. Neurophysiol. 45:467–481.PubMedGoogle Scholar
  196. Tanji, J., Taniguchi, K., and Saga, T., 1980, Supplementary motor area: Neuronal response to motor instructions, J. Neurophysiol. 43:60–68.PubMedGoogle Scholar
  197. Tarlov, E., 1969, The rostral projections of the primate vestibular nuclei: An experimental study in macaque, baboon and chimpanzee, J. Comp. Neurol. 135:27–56.PubMedGoogle Scholar
  198. Thach, W. T., 1978, Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum, J . Neurophysiol. 41:654–676.PubMedGoogle Scholar
  199. Thach, W. T., and Jones, E. G., 1979, The cerebellar dentatothalamic connection: Terminal field, lamellae, rods and somatotopy, Brain Res. 169:168–172.PubMedGoogle Scholar
  200. Tracey, D. J., Asanuma, C., Jones, E. G., and Porter, R., 1980, Thalamic relay to motor cortex: Afferent pathways from brain stem, cerebellum and spinal cord in monkeys, J. Neurophysiol. 44:532–554.PubMedGoogle Scholar
  201. Trevino, D. L., and Carstens, E., 1975, Confirmation of the location of spinothalamic neurons in the cat and monkey by the retrograde transport of horseradish peroxidase, Brain Res. 98:177–182.PubMedGoogle Scholar
  202. Uno, M., Yoshida, M., and Hirota, I., 1970, The mode of cerebello-thalamic relay transmission investigated with intracellular recordings from cells of the ventrolateral nucleus of cat’;s thalamus, Exp. Brain Res. 10:121–139.PubMedGoogle Scholar
  203. Vogt, B. A., and Pandya, D. N., 1977, Cortico-cortical connections of somatic sensory cortex (areas 3, 1 and 2) in the rhesus monkey, J. Comp. Neurol. 177:179–191.Google Scholar
  204. Vogt, C., 1909, La myeloarchitecture du thalamus du cercopiteque, J. Psychol. Neurol. 12:285–324.Google Scholar
  205. Vogt, C., and Vogt, O., 1919, Allgemeinere Ergebnisse unserer Hirnforschung, J. Psychol. Neurol. 25:277–462.Google Scholar
  206. Vogt, C., and Vogt, O., 1941, Thalamusstudien I–III: I. Zur Einfuhrung. II. Homogenitat und Grenzgestaltung der Grisea des Thalamus. III. Das Griseum centrale (Centrum medianum Luys), J. Psychol. Neurol. 50:32–154.Google Scholar
  207. Von Bonin, G., 1949, Architecture of the precentral motor cortex and some adjacent areas, in: The Precentral Motor Cortex(P. C. Bucy, ed.), University of Illinois Press, Urbana, pp. 7–83.Google Scholar
  208. Walker, A. E., 1938, The Primate Thalamus, University of Chicago Press, Chicago.Google Scholar
  209. Weinrich, M., and Wise, S. P., 1982, The premotor cortex of the monkey, J. Neurosci. 2:1329–1342.PubMedGoogle Scholar
  210. Welt, C., Aschoff, J. C., Kameda, K., and Brooks, V. B., 1967, Intra-cortical organization of cat’s motor sensory neurons, in: Neurophysiological Basis of Normal and Abnormal Motor Activities(M. D. Yahr and D. P. Purpura, eds.), Raven Press, New York, pp. 255–288.Google Scholar
  211. Werner, G., and Mountcastle, V. B., 1963, The variability of central neural activity in a sensory system, and its implications for the central reflection of sensory events, J. Neurophysiol. 26:958–977.PubMedGoogle Scholar
  212. Whitsel, B. L., Petrucelli, L. M., and Werner, G., 1969, Symmetry and connectivity in the map of the body surface in somatosensory area II of primates, J. Neurophysiol. 32:170–183.PubMedGoogle Scholar
  213. Wiesendanger, M., 1973, Input from muscle and cutaneous nerves of the hand and forearm to neurons of the precentral gyrus of baboons and monkeys, J. Physiol (London) 228:203–219.Google Scholar
  214. Wiesendanger, M., Rüegg, D. C., and Lucier, G. E., 1976, The influence from stretch receptors on cortical cells of area 3a and 4 in monkey, Exp. Brain Res. Suppl. 1:437–439.Google Scholar
  215. Willis, W. D., Kenshalo, D. R., Jr., and Leonard, R. B., 1979, The cells of origin of the primate spinothalamic tract, J. Comp. Neurol 188:543–574.PubMedGoogle Scholar
  216. Wise, S. P., 1985, The primate premotor cortex: Past, present, and preparatory, Annu. Rev. Neurosci. 8:1–20.PubMedGoogle Scholar
  217. Wolpaw, J. R., 1980, Correlations between task-related activity and responses to perturbations in primate sensorimotor cortex, J. Neurophysiol 44 :1122–1143.PubMedGoogle Scholar
  218. Woolsey, C. N., 1958, Organization of somatic sensory and motor areas of the cerebral cortex, in: Biological and Biochemical Bases of Behavior(H. F. Harlow and C. N. Woolsey, eds.), University of Wisconsin Press, Madison, pp. 63–81.Google Scholar
  219. Zant, J. D., and Strick, P. I., 1978, The cells of origin of interhemispheric connections in the primate motor cortex, Soc. Neurosci. Abstr. 4:308.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Edward G. Jones
    • 1
  1. 1.Department of Anatomy, California College of MedicineUniversity of California, IrvineIrvineUSA

Personalised recommendations