Oocyte Fusion

  • Bela J. Gulyas
Part of the Developmental Biology book series (DEBO, volume 4)


Membrane fusion is paramount to many cellular and subcellular functions of eukaryotic cells. It occurs continuously between intracellular organelles. For example, endocytotic vesicles are formed by the fusion of smaller vesicles, which in turn coalesce with components of the Golgi or lysosomes (see review, Meldolesi et al., 1979). Membrane fusion also plays a prominent role in endocytosis of extracellular substances and exocytotic discharge of cellular products or by-products. Partial or complete membrane fusion can occur also between cells. A partial fusion of plasma membranes of two opposing cells takes place during the formation of zona occludens, which are essential in cell-cell communications and in the maintenance of spacial polarity of cells with respect to each other (see reviews, Sheridan, 1976; Papahadjopoulos et al., 1979). Spontaneous fusion of cells without the addition of exogenous chemical fusing agents or viruses occurs as a natural phenomenon during the formation of polykaryote cells. Spontaneous cell-to-cell fusion represents a very specific event; that is, under normal conditions the extent of fusion is regulated by the participant cells. Common to all spontaneous cell fusion is that the nature and the cause of the fusion are not well understood.


Zona Pellucida Mouse Oocyte Immature Oocyte Sendai Virus Cortical Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balakier, H., 1978, Induction of maturation in small oocytes from sexually immature mice by fusion with meiotic or mitotic cells, Exp. Cell Res. 112: 137–141.PubMedCrossRefGoogle Scholar
  2. Baranska, W., and Koprowski, H., 1970, Fusion of unfertilized mouse eggs with somatic cells, J. Exp. Zool. 174: 1–14.PubMedCrossRefGoogle Scholar
  3. Bedford, J. M., and Cooper, G. W., 1979, Membrane fusion events in the fertilization of vertebrate eggs, in: Cell Surface Reviews, Vol. 5: Membrane Fusion ( G. Poste and G. L. Nicolson, eds.), pp. 65–125, Elsevier/North-Holland, Amsterdam.Google Scholar
  4. Bromhall, J. D., 1975, Nuclear transplantation in the rabbit egg, Nature (Lond.) 258: 719–721.CrossRefGoogle Scholar
  5. Cuthbertson, K. S. R., 1983, Parthenogenetic activation of mouse oocytes in vitro with ethanol and benzyl alcohol, J. Exp. Zool. 226: 311–314.PubMedCrossRefGoogle Scholar
  6. Cuthbertson, K. S. R., Whittingham, D. G., and Cobbold, P. H., 1981, Free Ca2+ increases in exponential phases during mouse oocyte activation, Nature (Lond.) 294: 754–757.CrossRefGoogle Scholar
  7. Eglitis, M. A., 1980, Formation of tetraploid mouse blastocysts following blastomere fusion with polyethylene glycol, J. Exp. Zool. 213: 309–312.PubMedCrossRefGoogle Scholar
  8. Fulka, J., Jr., 1983, Nuclear maturation in pig and rabbit oocytes after interspecific fusion, Exp. Cell. Res. 146: 212–218.PubMedCrossRefGoogle Scholar
  9. Fulton, B., and Whittingham, D. G., 1981, Activation of mammalian oocytes by intracellular injection of calcium, Nature (Lond.) 273: 149–151.CrossRefGoogle Scholar
  10. Goddard, M. J., and Pratt, H. P. M., 1983, Control of events during early cleavage of the mouse embryo: An analysis of the “2-cell block,” J. Embryol. Exp. Morphol. 73: 111–133.PubMedGoogle Scholar
  11. Graham, C. F., 1969, The fusion of cells with one- and two-cell mouse embryos, in: Wistar Institute Symposium Monographs, Vol. 9: Heterospecific Genome Interactions ( V. Defendi, ed.), pp. 19–33, The Wistar Institute Press, Philadelphia.Google Scholar
  12. Graham, C. F., 1971a, Experimental early parthenogenesis in mammals, in: Advances in the Bio-sciences, Vol. 6: Shering Symposium on Mammalian Development ( G. Raspe, ed.), pp. 87–97, Pergamon Press, Oxford.Google Scholar
  13. Graham, C. F., 1971b, Virus assisted fusion of embryonic cells, in: In Vitro Methods in Reproductive Cell Biology (E. Diczfalusy, ed.), Acta Endocrinol. (Suppl.)(Copenh.) 153: 154–167.Google Scholar
  14. Graham, C. F., 1974, The production of parthenogenetic mammalian embryos and their use in biological research, Biol. Rev. 49: 399–422.PubMedCrossRefGoogle Scholar
  15. Gulyas, B. J., and Yuan, L. C., 1985, Cortical reaction in parthenogenetically (Ethanol) activated mouse oocytes. J. Exp. Zool. 233: 269–276.PubMedCrossRefGoogle Scholar
  16. Gulyas, B. J., Wood, M., and Whittingham, D. G., 1984, Fusion of oocytes and development of oocyte fusion products in the mouse, Dev. Biol. 101: 246–250.PubMedCrossRefGoogle Scholar
  17. Gwatkin, R. B. L., 1976, Fertilization, in: The Cell Surface in Animal Embryogenesis and Development ( G. Poste and G. L. Nicolson, eds.), Vol. 1, pp. 1–54, Elsevier/North-Holland, Amsterdam.Google Scholar
  18. Harris, H., and Watkins, J. F., 1965, Hybrid cells derived from mouse and man: Artificial hetero- karyons of mammalian cells from different species, Nature (Lond.) 205: 640–646.CrossRefGoogle Scholar
  19. Hoppe, P. C., and Illmensee, K., 1977, Microsurgically produced homozygous-diploid uniparental mice, Proc. Natl. Acad. Sci. USA 74: 5657–5661.PubMedCrossRefGoogle Scholar
  20. Kaufman, M. H., 1975, The experimental induction of parthenogenesis in the mouse, in: The Early Development of Mammals ( M. Balls and A. E. Wild, ed.), pp. 25–44, Cambridge University Press, London.Google Scholar
  21. Kaufman, M. H., 1982, The chromosome complement of single-pronuclear haploid mouse embryos following activation by ethanol treatment, J. Embryol. Exp. Morphol. 71: 139–154.PubMedGoogle Scholar
  22. Kaufman, M. H., Barton, S. C., and Surani, M. A. H., 1977, Normal postimplantation development of mouse parthenogenetic embryos to the forelimb bud stage, Nature (Lond.) 265: 53–55.CrossRefGoogle Scholar
  23. Kaufman, M. H., Guc-Cubrilo, M., and Lyon, M. F., 1978, X chromosome inactivation in diploid parthenogenetic mouse embryos, Nature (Lond.) 271: 547–549.CrossRefGoogle Scholar
  24. Klebe, R. J., and Mancuso, M. G., 1981, Chemicals which promote cell hybridization, Somat. Cell Genet. 7: 473–488.PubMedCrossRefGoogle Scholar
  25. Knutton, S., and Pasternak, C. A., 1979, The mechanism of cell-cell fusion, Trends Biochem. Sci. 4: 220–223.CrossRefGoogle Scholar
  26. Lucy, J. A., 1975, Aspects of the fusion of cells in vitro without viruses, J. Reprod. Fertil. 44: 193–205.PubMedCrossRefGoogle Scholar
  27. Lucy, J. A., 1978, Mechanisms of chemically induced cell fusion, in: Membrane Fusion ( G. Poste and G. L. Nicolson, eds.), Vol. 5, pp. 267–304, Elsevier/North-Holland, Amsterdam.Google Scholar
  28. Mann, J. R., and Lovell-Badge, R. H., 1984, Inviability of parthenogenones is determined by pronuclei, not egg cytoplasm, Nature (Lond.) 310: 66–67.CrossRefGoogle Scholar
  29. Markert, C. L., and Seidel, G. E., Jr., Parthenogenesis, identical twins, and cloning in mammals, in: New Technologies in Animal Breeding (B. G. Brackett, G. E. Seidel, Jr., and S. M. Seidel, eds.), pp. 181–200, Academic Press, New York.Google Scholar
  30. McGrath, J., and Solter, D., 1983, Nuclear transplantation in the mouse embryo by microsurgery and cell fusion, Science 220: 1300–1302.PubMedCrossRefGoogle Scholar
  31. McGrath, J., and Solter, D., 1984, Completion of mouse embryogenesis requires both the maternal and paternal genomes, Cell 37: 179–183.PubMedCrossRefGoogle Scholar
  32. Meldolesi, J., Borgese, N., De Camilli, P., and Ceccarelli, B., 1979, Cytoplasmic membranes and the secretory process, in: Membrane Fusion ( G. Poste and G. L. Nicolson, eds.), Vol. 5, pp. 509–627, Elsevier/North-Holland, Amsterdam.Google Scholar
  33. Mercer, W. E., and Baserga, R., 1982, Techniques for decreasing the toxicity of polyethylene glycol, in: Techniques in Somatic Cell Genetics ( J. W. Shay, ed.), pp. 23–45, Plenum Press, New York.Google Scholar
  34. Mintz, B., Gearhart, J. D., and Guymont, A. O., 1973, Phytohemagglutinin-mediated blastomere aggregation and development of allophenic mice, Dev. Biol. 31: 195–199.PubMedCrossRefGoogle Scholar
  35. Muggleton-Harris, A., Whittingham, D. G., and Wilson, L., 1982, Cytoplasmic control of preimplantation development in vitro in the mouse, Nature (Lond.) 299: 460–462.CrossRefGoogle Scholar
  36. Papahadjopoulos, D., Poste, G., and Vail, W. J., 1979, Studies on membrane fusion with natural and model membranes, in: Methods in Membrane Biology, ( E. D. Korn, ed.), Vol. 10, pp. 1–121, Plenum Press, New York.Google Scholar
  37. Poste, G., and Pasternak, C. A., 1979, Virus-induced cell fusion, in: Membrane Fusion ( G. Poste and G. L. Nicolson, eds.), Vol. 5, pp. 305–367, Elsevier/North-Holland, Amsterdam.Google Scholar
  38. Richter, H. -P., Scheurich, P., and Zimmermann, U., 1981, Electric field-induced fusion of sea urchin eggs, Dev. Growth. Diff. 23: 479–486.CrossRefGoogle Scholar
  39. Schneiderman, S., Farber, J. L., and Baserga, R., 1979, A simple method for decreasing the toxicity of polyethylene glycol in mammalian cell hybridization, Somat. Cell Genet. 5: 263–269.PubMedCrossRefGoogle Scholar
  40. Sheridan, J. D., 1976, Cell coupling and cell communication during embryogenesis, in: The Cell Surface in Animal Embryogenesis and Development ( G. Poste and G. L. Nicolson, eds.), Vol. 1, pp. 409–447, Elsevier/North-Holland, Amsterdam.Google Scholar
  41. Soupart, P., 1980, Initiation of mouse embryonic development by oocyte fusion, Arch. And. 5: 55–57.Google Scholar
  42. Soupart, P., 1982, Initiation of mouse embryonic development by oocyte fusion, in: In Vitro Fertilization and Embryo Transfer ( E. S. E. Hafez and K. Semm, eds.), pp. 51–63, MTP Press, Falcon House, Lancaster, England.Google Scholar
  43. Spindle, A., 1981, Polyethylene glycol-induced fusion of two-cell mouse embryo blastomeres, Ex p. Cell Res. 131: 465–470.CrossRefGoogle Scholar
  44. Szollosi, D., Balakier, H., Czolowska, R., and Tarkowski, A. K., 1980, Ultrastructure of cell hybrids between mouse oocytes and blastomeres, J. Exp. Zool. 213: 315–325.CrossRefGoogle Scholar
  45. Tarkowski, A. K., 1961, Mouse chimaeras developed from fused eggs, Nature (Lond.) 190: 857–860.CrossRefGoogle Scholar
  46. Tarkowski, A. K., and Balakier, H., 1980, Nucleo-cytoplasmic interactions in cell hybrids between mouse oocytes, blastomeres and somatic cells, J. Embryol. Exp. Morphol. 55: 319–330.PubMedGoogle Scholar
  47. Whittingham, D. G., 1971, Culture of mouse ova, J. Reprod. Fertil. (Suppl.) 14: 7–21.Google Scholar
  48. Whittingham, D. G., 1980, Parthenogenesis in mammals, in: Oxford Reviews in Reproductive Biology ( C. H. Finn, ed.), Vol. 2, pp. 205–231, Oxford University Press, Oxford.Google Scholar
  49. Zimmermann, U., Vienken, J., 1982, Electric field-induced cell-to-cell fusion, J. Membr. Biol. 67: 165–182.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Bela J. Gulyas
    • 1
  1. 1.Pregnancy Research Branch, National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA

Personalised recommendations