Studies of Local Blood Flow and Glucose Utilization in Brain by Computer Assisted Autoradiography

  • Christer Owman
  • Nils H. Diemer
Part of the Wenner-Gren Center International Symposium Series book series (WGCISS, volume 42)


It has for a long time been assumed that the cerebrovascular bed differs fundamentally from the peripheral circulation in that perivascular nerves are lacking and that the control of flow in the brain is exerted entirely by “chemical” or “metabolic” mediators. With the application of highly sensitive and specific neurohistochemical methods for visualization of aminergic transmitters (Falck, 1962; Falck et al., 1962; Björklund et al., 1972) and, later on, for the demonstration of various neuropeptides (Hökfelt et al., 1980) it has now been established that the cerebrovascular bed is, indeed, extensively supplied with several systems of perivascular nerve fibres (Owman et al., 1984). This has led to the additional concept of “neurogenic” control mechanisms for the brain circulation (Owman and Edvinsson, 1977; Heistad and Marcus, 1982; MacKenzie et al., 1984).


Cerebral Blood Flow Glucose Utilization Cerebral Circulation Local Blood Flow Brain Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariëns, E.J., Beld, A.J., Rodrigues de Miranda, J.F. and Simonis, A.M. (1979). The pharmacon-receptor-effector concept. In The Receptors, Vol. I; General Principles and Procedures. (ed. R.D. O’Brien). Plenum Press, New York-London, pp. 33 - 91.Google Scholar
  2. Baron, C., Rougemont, D., Soussaline, F., Bustany, P., Crouzel, C., Bousser, M.G. and Comar, D. (1984). Local interrelationsships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients: A positron tomography study. J. Cerebral Blood Flow Metab. 4, 140–149.CrossRefGoogle Scholar
  3. Bennet, M.R. (1972). Autonomic Neuromuscular Transmission. University Press, Cambridge.Google Scholar
  4. Bevan, J.A., Bevan, R.D. and Duckies, S.P. (1980). Adrenergic regulation of vascular smooth muscle. Handbook of Physiology, Section 2, Volume II, 515–566.Google Scholar
  5. Björklund, A., Falck, B. and Owman, Ch. (1972). Fluorescence microscopic and microspectrofluorometric techniques for the cellular localization and characterization of biogenic amines. In Methods of Investigative and Diagnostic Endocrinology Vol. I (ed. S.A. Berson ), The Thyroid and Biogenic Amines. (eds. J.E. Rail and I.J. Kopin). North Holland, Amsterdam, pp. 318–368.Google Scholar
  6. Blasberg, R.G., Fenstermacher, J.D. and Patlak, C.S. (1983). Transport of a -aminoisobutyric acid across brain capillary and cellular membranes. J. Cerebral Blood Flow Metab. 3, 8–32.CrossRefGoogle Scholar
  7. Blasberg, R.G., Groothuis, D. and Molnar, P. (1981). Application of quantitative autoradiographic measurements in experimental brain tumor models. Seminars in Neurology, 1, 203–221.CrossRefGoogle Scholar
  8. Bodsch, W., Takahashi, K., Ophoff, B.G and Hossmann, K.-A. (1984). Local rates of cerebral protein synthesis in the gerbil and monkey brain. In Methods for Measurement of Cerebral Blood Flow and Metabolism, (eds. A. Hartmann and S. Hoyer ). Springer Press, Heidelberg and New York. In press.Google Scholar
  9. Burnstock, G. and Costa, M. (1975). Adrenergic Neurons. Their Organization, Function and Development in the Peripheral Nervous System. Chapman and Hall, London.Google Scholar
  10. Coons, A.H., Creech, H.J., Jones, R.N. and Berliner, E. (1942). The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45, 159–170.Google Scholar
  11. Csiba, L., Paschen, W. and Hossmann, K.-A. (1983). A topographic quantitative method for measuring brain tissue pH under physiological and pathophysiological conditions. Brain Res. 289, 334–337.PubMedCrossRefGoogle Scholar
  12. Diemer, N.H. and Rosenorn, J. (1981). Determination of local cerebral blood flow and glucose metabolism or transfer by means of a double autoradiographic method. J. Cerebral Blood Flow Metab. suppl. 1, S72–S73.Google Scholar
  13. Edvinsson, L. and MacKenzie, E.T. (1977). Amine mechanisms in the cerebral circulation. Pharmacol. Rev. 28, 275–348.Google Scholar
  14. Eklöf, B., Lassen, N.A., Nilsson, L., Norberg, K., Siesjo, B.K. and Torlof, P. (1974). Regional blood flow in the rat measured by the tissue stripling technique; a critical evaluation using four indicators C14-antipyrine, C14-ethanol, H3-water and xenon133. Acta Physiol. Scand. 91, 1–10.PubMedCrossRefGoogle Scholar
  15. Falck, B. (1962). Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta Physiol. Scand. 56, suppl 197, 1–25.CrossRefGoogle Scholar
  16. Falck, B., Hillarp, N.-A., Thieme, G. and Torp, A. (1962). Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354.CrossRefGoogle Scholar
  17. Faraco-Cantin, F., Courville, J. and Lund, J.P. (1980). Methods for 3H-2-D-deoxyglucose autoradiography on film and fine-grain emulsions. Stain Technol. 55, 247–252.PubMedGoogle Scholar
  18. Folkow, B. and Neil, E. (1971). Circulation. Oxford University Press, London.Google Scholar
  19. Furchgott, R.F. (1972). The classification of adrenoceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory. Handbook of Experimental Pharmacology 33, 283–335.Google Scholar
  20. Furlow Jr, T.W., Martin, R.M. and Harrison, L.E. (1983). Simultaneous measurements of local glucose utilization and blood flow in the rat brain: An autoradiographic method using two tracers labeled with carbon-14. J. Cerebral Blood Flow Metab. 3, 62–66.CrossRefGoogle Scholar
  21. Gjedde, A, Hansen, A.J. and Siemkowicz, E. (1980). Rapid simultaneous determination of regional blood flow and blood-brain glucose transfer in brain of rat. Acta Physiol. Scand. 108, 321–330.PubMedCrossRefGoogle Scholar
  22. Heiss, W.-D. Pawlik, G., Herholz, K., Wagner, R., Goldner, H. and Wienhard, K. (1984). Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of 18F-2-fluoro-2-deoxy-D-glucose. J. Cerebral Blood Flow Metab. 4, 212–223.CrossRefGoogle Scholar
  23. Heistad, D.D. and Marcus, M.L. (eds.) (1982). Cerebral Blood Flow. Effects of Nerves and Neurotransmitters. Elsevier/North- Holland, Amsterdam.Google Scholar
  24. Hökfelt, T., Fuxe, K., Goldstein, M., Johansson, 0., Ljungdahl, A., Lundberg, J.M. and Schultzberg, M. (1979). Immunocytochemical studies on catecholamine cell systems with aspects on relations to putative peptide transmitters. In Catecholamines: Basic and Clinical Frontiers, (eds. E. Usdin, I.J. Kopin and J. Barchas ). Pergamon Press, New York, pp. 1007–1019.Google Scholar
  25. Hökfelt, T., Johansson, 0., Ljungdahl, A, Lundberg, J.M. and Schultzberg, M. (1980). Peptidergic neurones. Nature, 284, 515–521.PubMedCrossRefGoogle Scholar
  26. Kanno, I., Lammertsma, A.A., Heather, J.D., Gibbs, J.M., Rhodes, C.G., Clark, J.C. and Jones, T. (1984) Measurement of cerebral blood flow using bolus inhalation of C15O2 and positron emission tomography: Description of the method and its comparison with the C1502 continuous inhalation method. J. Cerebral Blood Flow Metab. 4,. 224–234.CrossRefGoogle Scholar
  27. Kety, S.S. (1960). Blood-tissue exchange methods. Theory of blood- -tissue exchange and its application to measurement of blood flow. In Methods in Medical Research, vol. 8 (ed. H.D. Bruner ). Year Book Publishers, Chicago, pp. 223–227.Google Scholar
  28. Kety, S.S. and Schmidt, C.F. (1948). The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J. Clin. Invest. 27, 476–483.CrossRefGoogle Scholar
  29. Korner, P.I. (1979). Central nervous control of autonomic cardiovascular function. Handbook of Physiology, Section 2, Volume I, 691–739.Google Scholar
  30. Kuhar, M.J. (1983). Autoradiographic localization of drug and neurotransmitter receptors. In Handbook of Chemical Neuroanatomy, vol. 1: Methods in Chemical Neuroanatomy (eds. A. Bjorklund and T. Hokfelt ). Elsevier, Amsterdam, pp. 398–415.Google Scholar
  31. Lassen, N.A. and Ingvar, D.H. (1961). Blood flow of the cerebral cortex determined by radioactive krypton. Experientia, 17, 42–45.PubMedCrossRefGoogle Scholar
  32. Larsson, L.-I. (1983). Methods for immunocytochemistry of neuro- hormonal peptides. In Handbook of Chemical Neuroanatomy, vol. 1: Methods in Chemical Neuroanatomy (eds. A. Bjorklund and T. Hokfelt ). Elsevier, Amsterdam, pp. 147–209.Google Scholar
  33. Lassen, N.A. and Ingvar. D.H. (1972). Radioisotopic assessment of regional cerebral blood flow. Progr. nucl. Med. 1, 376–409.Google Scholar
  34. Lassen, N.A., Roland, P.E., Larsen, B., Melamed, E. and Soh, K. (1977). Mapping of human cerebral function: A study of the regional cerebral blood flow pattern during rest, its reproducibility and the activations seen during basic sensory and motor functions. Acta Neurol. Scand. Suppl. 64, 56, 262–263.Google Scholar
  35. Lear, J.L., Ackermann, R., Kameyama, M., Carson, R. and Phelps, M. (1984). Multiple-radionuclide autoradiography in evaluation of cerebral function. J. Cerebral Blood Flow Metab. 4, 264–269.CrossRefGoogle Scholar
  36. Lear, J.L., Jones. S.C., Greenberg, J.H., Fedora, T.J. and Reivich, M. (1981). Use of 123I and 14C in a double radionuclide autoradiographic technique for simultaneous measurement of LCBF nad LCMRgl- Theory and method. Stroke, 12, 589–597.PubMedCrossRefGoogle Scholar
  37. MacKenzie, E.T., Seylaz, J. and Bes, A. (eds.) (1984). Neurotransmitters and the Cerebral Circulation. Raven Press, New York.Google Scholar
  38. Mies., Kloiber, O., Drewes, L.R. and Hossmann, K.-A. (1984). Cerebral blood flow and regional potassium distribution during focal ischemia of gerbil brain. Ann. Neurol. In press.Google Scholar
  39. Mies, G., Niebuhr, I. and Hossmann, K.-A. (1981). Simultaneous measurement of blood flow and glucose metabolism by autoradiographic techniques. Stroke, 12, 581–588.PubMedCrossRefGoogle Scholar
  40. Owman, Ch., Andersson, J., Hanko, J. and Hardebo, J.E. (1984). Neurotransmitter amines and peptides in the cerebrovascular bed. In Neurotransmitters and the Cerebral Circulation (eds. E.T. MacKenzie, J. Seylaz and A. Bes ). Raven Press, New York, pp. 11–38.Google Scholar
  41. Owman, Ch. and Edvinsson, L. (eds.) (1977). Neurogenic Control of the Brain Circulation. Pergamon Press, Oxford.Google Scholar
  42. Owman. Ch. and Hardebo, J.E. Mechanisms of cerebral vasodilatation: Amines, peptides and the blood-brain barrier. In Vasodilatation. (eds. P.M. Vanhoutte and I. Leusen). Raven Press, New York, pp. 159–179.Google Scholar
  43. Paschen, W., Niebuhr, I. and Hossmann, K.-A. (1981). A biolumin- escence method for the demonstration of regional glucose distribution in brain slices. J. Neurochem. 36, 513–517.PubMedCrossRefGoogle Scholar
  44. Raichle, M.E. (1979). Quantitative in vivo autoradiography with positron emission tomography. Brain Res. Rev. 1, 47–68.CrossRefGoogle Scholar
  45. Reivich, M., Jehle, J., Sokoloff, L. and Kety, S.S. (1969). Measurement of regional cerebral blood flow with antipyrine- 14C in awake cats. J. appl. Physiol. 27, 296–300.PubMedGoogle Scholar
  46. Roy, C.S. and Sherrington, C.S. (1980). The regulation of the blood supply of the brain. J. Physiol. 11, 85–108.Google Scholar
  47. Sakurada, O., Kennedy, C., Jehle, J., Brown, J.D., Carbin, C.L. and Sokoloff, L. (1978). Measurement of local cerebral blood flow with 14C-iodoantipyrine. Amer. J. Physiol. 234, H59–H66.PubMedGoogle Scholar
  48. Sapirstein, L.A. (1962). Measurement of the cephalic and cerebral blood flow fractions of the cardiac output in man. J. Clin. Invest. 41, 1429–1435.PubMedCrossRefGoogle Scholar
  49. Siesjö, B.K. (1978). Brain Energy Metabolism. John Wiley, Chichester.Google Scholar
  50. Sokoloff, L. (1981). Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J. Cerebral Blood Flow Metab. 1, 7–36.CrossRefGoogle Scholar
  51. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S. Pettigrew, K.D., Sadurada, O. and Shinohara, M. (1977). The 14C-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anaesthetized albino rat. J. Neurochem. 28, 897–916.PubMedCrossRefGoogle Scholar
  52. Sveinsdottir, E., Larsen, B., Rommer, P. and Lassen, N.A. (1977). A multidetector scintillatibn camera with 254 channels. J. Nucl. Med. 18, 168–174.PubMedGoogle Scholar
  53. Williams, L.T. and Lefkowitz, R.L. (1978). Receptor Binding Studies in Adrenergic Pharmacology. Raven Press, New York.Google Scholar

Copyright information

© The Wenner-Gren Centre 1985

Authors and Affiliations

  • Christer Owman
    • 1
  • Nils H. Diemer
    • 2
  1. 1.Department of HistologyUniversity of LundSweden
  2. 2.Department of NeuropathologyUniversity of CopenhagenDenmark

Personalised recommendations