Mechanisms that Regulate Membrane Growth Factor Receptors

  • Michael P. Czech
  • Roger J. Davis
  • Jeffrey E. Pessin
  • Cristina Mottola
  • Yoshitomo Oka
Part of the New Horizons in Therapeutics book series (NHTH)


Cell-surface receptors for hormones and other physiologically active agents play critically important roles in signaling and coordinating a multitude of cellular functions. The molecular mechanisms whereby receptor- mediated transmembrane signaling occurs have been intensively studied during the past two decades, and significant insight has been obtained about some of these mechanisms. For example, receptors linked to the generation of cAMP are known to interact with adenylate cyclase through the action of GTP binding (coupling) proteins, which have been purified to homogeneity (Gilman, 1984). On the other hand, many other receptor systems, notably the growth factor receptors, participate in signaling mechanisms that are as yet not understood. An important future objective is the elucidation of signaling mechanisms related to this latter category of receptor systems.


Epidermal Growth Factor Receptor Insulin Receptor Phorbol Ester Tyrosine Kinase Activity Epidermal Growth Factor Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ascendel, C. L., Staller, J. M., and Boutwell, R. K., 1983, Protein kinase activity associated with a phorbol ester receptor purified from mouse brain, Cancer Res. 43:4333.Google Scholar
  2. August, G. P., Nissley, S. P., Kasuga, M., Lee, L., Greenstein, L., and Rechler, M. M., 1983, Purification of an insulin-like growth factor II receptor from rat chondrosarcoma cells, J. Biol. Chem. 258: 9033.PubMedGoogle Scholar
  3. Blumberg, P. M., 1980, In vitro studies on the mode of action of the phorbol esters, potent tumor promoters: Part 1, Crit. Rev. Toxicol. 8: 153.PubMedCrossRefGoogle Scholar
  4. Blumberg, P. M., 1981, In vitro studies on the mode of action of the phorbol esters, potent tumor promotors: Part 2, Crit. Rev. Toxicol. 8: 199.PubMedCrossRefGoogle Scholar
  5. Boutwell, R. K., 1974, The function and mechanism of promoters of carcinogenesis, Crit. Rev. Toxicol. 2: 419.CrossRefGoogle Scholar
  6. Brown, K. D., Dicker, P., and Rozengurt, E., 1979, Inhibition of epidermal growth factor binding to surface receptors by tumor promoters, Biochem. Biophys. Res. Commun. 86: 1037.PubMedCrossRefGoogle Scholar
  7. Castagna, M., Takai, Y.,, Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholopid-dependent protein kinase by tumor promoting phorbol esters, J. Biol. Chem. 257: 7847.Google Scholar
  8. Cochet, C., Gill, G., Meisenhelder, J., Cooper, J., and Hunter, T., 1984, C-kinase phos- phorylates the epidermal growth factor receptor and reduces its epidermal growth factor- stimulated tyrosine protein kinase activity, J. Biol. Chem. 259: 2553.PubMedGoogle Scholar
  9. Cushman, S. W., and Wardzala, L. J., 1980, Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell, J. Biol. Chem. 255: 4758.PubMedGoogle Scholar
  10. Czech, M. P., 1977, Molecular basis of insulin action, Ann. Rev. Biochem. 46: 359.PubMedCrossRefGoogle Scholar
  11. Czech, M. P., 1982, Structural and functional homologies in the receptors for insulin and the insulin-like growth factors, Cell 31: 8.PubMedCrossRefGoogle Scholar
  12. Czech, M. P., 1982, Structural and functional homologies in the receptors for insulin and the insulin-like growth factors, Cell 31: 8.PubMedCrossRefGoogle Scholar
  13. Davis, R. J., and Czech, M. P., 1984, Tumor-promoting phorbol diesters mediate phosphorylation of the epidermal growth factor receptor, J. Biol.Chem. 259: 8545–8549.PubMedGoogle Scholar
  14. Davis, R. J., and Czech, M. P., 1985, Tumor-promoting phorbol diesters cause the phosphorylation of epidermal growth factor receptors in normal human fibroblasts at threonine-654, Proc. Natl. Acad. Sci. U.S.A., 82: 1974–1978.PubMedCrossRefGoogle Scholar
  15. Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 37: 577.CrossRefGoogle Scholar
  16. Iwashita, S., and Fox, C. F., 1984, Epidermal growth factor and potent phorbol ester tumor promoters induce epidermal growth factor receptor phosphorylation in a similar but distinctly different manner in human epidermal carcinoma A431 cells, J. Biol. Chem. 259: 2559.PubMedGoogle Scholar
  17. Kahn, C. R., White, M. F., Grigorescu, F., Takayama, S.,Haring, H. U., and Crettaz, M., 1985, The insulin receptor protein kinase, in: The Molecular Basis of Insulin Action ( M. P. Czech, ed.), Plenum Press, New York, pp. 67–93.Google Scholar
  18. Kakkawa, U., Takai, Y., Tanaka, Y., Miyake, R., and Nishizuka, Y., 1983, Protein kinase C as a possible receptor protein of tumor promoting phorbol esters, J. Biol. Chem. 258: 1 1442.Google Scholar
  19. Kasuga, M., Fujita-Yamaguchi, Y., Blith, D. L., and Kahn, C. R., 1983, Tyrosine-specific protein kinase activity is associated with the purified insulin receptor, Proc. Natl. Acad. Sci. U.S.A. 80: 2137.PubMedCrossRefGoogle Scholar
  20. King, A. C., and Cuatrecasas, P., 1982, Resolution of high and low affinity epidermal growth factor receptors, J. Biol. Chem. 257: 3053.PubMedGoogle Scholar
  21. King, G. L., Rechler, M. M., and Kahn, C. R., 1982, Interactions between the receptors for insulin an the insulin-like growth factors on adipocytes, J. Biol. Chem. 257: 10001.PubMedGoogle Scholar
  22. Kirsch, D. M., Baumgarten, M., Deufel, T., Rinninger, F., Kemmler, W., and Haring, H. U., 1983, Catecholamine-induced insulin resistance of glucose transport in isolated rat adipocytes, Biochem. J. 216: 737.PubMedGoogle Scholar
  23. Lee, L. S., and Weinstein, I. B., 1979, Mechanism of tumor promotor inhibition of cellular binding of epidermal growth factor, Proc. Natl. Acad. Sci. U.S.A. 76: 5168.PubMedCrossRefGoogle Scholar
  24. Lonroth, P., and Smith, U., 1983, p-Adrenergic dependent down regulation of insulin binding in rat adipocytes, Biochem. Biophys. Res. Commun. 112: 972.CrossRefGoogle Scholar
  25. Massague, J., and Czech, M. P., 1982, The subunit structures of two distinct receptors for insulin-like growth factors I and II and their relationship to the insulin receptor, J. Biol. Chem. 257: 5038.PubMedGoogle Scholar
  26. Massague, J., Guillette, B. J., and Czech, M. P., 1981, Affinity labeling of multiplication stimulating activity receptors in membranes from rat and human tissues, J. Biol. Chem. 256: 2122.PubMedGoogle Scholar
  27. Maxfield, F. R., Schlessinger, J., Shecter, Y., Pastan, I., and Willingham, M. C., 1978, Collection of insulin, EGF, α2-macroblogulin in the same patches on the surface of cultured fibroblasts and common internalization, Cell 14: 805.PubMedCrossRefGoogle Scholar
  28. Niedel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester receptor copurifies with protein kinase C, Proc. Natl. Acad. Sci. U.S.A. 80: 36.PubMedCrossRefGoogle Scholar
  29. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumor promotion, Nature 308: 693.PubMedCrossRefGoogle Scholar
  30. Oka, Y., Mottola, C., Oppenheimer, C. L., and Czech, M. P., 1984, Insulin activates the appearance of the IGF-II receptors on the adipocyte cell surface, Proc. Natl. Acad. Sci. U.S.A. 81: 4028–4032.PubMedCrossRefGoogle Scholar
  31. Oppenheimer, C. L., and Czech, M. P., 1983, Purification of the type II insulin-like growth factor receptor from rat placenta, J. Biol. Chem. 258: 8539.PubMedGoogle Scholar
  32. Oppenheimer, C. L., Pessin, J. E., Massague, J., Gitomer, W., and Czech, M. P., 1983, Insulin action rapidly modulates the apparent affinity of the insulin-like growth factor II receptor, J. Biol. Chem. 258: 4824–4830.PubMedGoogle Scholar
  33. Pessin, J. E., Gitomer, W., Oka, Y., Oppenheimer, C. L., and Czech, M. P., 1983, (βadrenergic regulation of insulin and epidermal growth factor receptors in rat adipocytes, J. Biol. Chem. 258: 7386–7394.PubMedGoogle Scholar
  34. Pessin, J. E., Mottola, C., Yu, K.-T. and Czech, M. P., 1985, Subunit structure and regulation of the insulin receptor complex, in: The Molecular Basis of Insulin Action ( M. P. Czech, ed.), Plenum Press, New York, pp. 3–29.Google Scholar
  35. Rosen, O. M., Herrera, R., Olowe, U., Petruzzelli, L. M., and Cobb, M. H., 1983, Phosphorylation activates the insulin receptor tyrosine protein kinase, Proc. Natl. Acad. Sci. U.S.A. 80: 2327.CrossRefGoogle Scholar
  36. Shoyab, M., DeLarco, J. E., and Todaro, G. J., 1979, Biologically active phorbol esters specifically alters affinity of epidermal growth factor membrane receptors, Nature 279: 387.PubMedCrossRefGoogle Scholar
  37. Suzuki, K., and Kono, T., 1980, Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site, Proc. Natl. Acad. Sci. U.S.A. 77: 2542.PubMedCrossRefGoogle Scholar
  38. Yu, K.-T., and Czech, M. P., 1984, Tyrosine phosphorylation of the insulin receptor p subunit activates the receptor-associated tyrosine kinase activity, J. Biol. Chem. 259: 5277.PubMedGoogle Scholar
  39. Zapf, J., Schoenle, E., and Froesch, E. R., 1978, Insulin-like growth factors I and II: Some biological actions and receptor binding characteristics of two purified constituents of nonsuppressibe insulin-like activity of human serum, Eur. J. Biochem. 87: 285.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Michael P. Czech
    • 1
  • Roger J. Davis
    • 1
  • Jeffrey E. Pessin
    • 1
  • Cristina Mottola
    • 1
  • Yoshitomo Oka
    • 1
  1. 1.Department of BiochemistryUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations