Skip to main content

Part of the book series: Sagamore Army Materials Research Conference Proceedings ((PHAE,volume 26))

  • 218 Accesses

Abstract

A polymer may be defined as a chainlike molecule consisting of a large number of relatively simple structural repeating units. There is no fixed lower limit defining the number of repeat units for a molecule to be regarded as polymeric. However polymers usually have molecular weights (MW) greater than about 5000 g/mol or an average of more than 100 repeat units per molecule; and unlike low MW compounds, polymers consist of a distribution of chainlike molecules of differing MW’s. Generally the repeat units are held together by covalent chemical bonds in the form of linear or branched open-chain molecules or three-dimensional networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Thermal Analysis

  • J.F. Johnson and P.S. Gill, eds., “Analytical Calorimetry”, Vol. 5, Plenum: New York, 1984.

    Google Scholar 

  • J.A. Reffner, “Characterization of Polymers by Thermomicrophotometry”, Am. Lab., 29–33 (April 1984).

    Google Scholar 

  • P.S. Gill, “Thermal Analysis Developments in Instrumentation and Applications”, Am. Lab., 39–49 (Jan. 1984).

    Google Scholar 

  • E.A. Turi, ed., “Thermal Characterization of Polymeric Materials”, Academic Press: New York, 1982.

    Google Scholar 

  • J. Chiu, “Polymer Characterization by Thermal Analysis”, Marcel Dekker: New York, 1974.

    Google Scholar 

  • P.E. Slade, Jr. and L.T. Jenkins, eds., “Techniques and Methods of Polymer Evaluation: Thermal Characterization Techniques”, Vol. 2, Marcel Dekker: New York, 1970.

    Google Scholar 

  • P.E. Slade, Jr. and L.T. Jenkins, eds., “Techniques and Methods of Polymer Evaluation: Thermal Analysis”, Vol. 1, Marcel Dekker: New York, 1966.

    Google Scholar 

Spectroscopy

  • J.L. Koenig, “Fourier Infrared Spectroscopy of Polymers”,Adv. Polym. Sci., 54, 87–145 (1984).

    Article  Google Scholar 

  • R.S. McDonald, “Infrared Spectrometry”, Anal. Chem., 56, 349R - 372R, (1984).

    Article  CAS  Google Scholar 

  • P.C. Painter, M.M. Coleman, and J.L. Koenig, “The Theory of Vibrational Spectroscopy and Its Application to Polymeric Materials”, John Wiley & Sons: New York, 1982.

    Google Scholar 

  • “An Infrared Spectroscopy Atlas for the Coating Industry”, Federation of Societies for Coating Technology: Philadelphia, PA, 1980.

    Google Scholar 

  • “The Infrared Spectra Atlas of Monomers and Polymers”, Sadtler Research Laboratories: Philadelphia, PA, 1980.

    Google Scholar 

  • H.W. Siesler and K. Holland-Moritz, “Infrared and Raman Spectroscopy of Polymers”, Marcel Dekker: New York, 1980.

    Google Scholar 

  • F. Adar and H. Noether, “Raman Microprobe Characterization of Polymerie Fibers”, Mierobeam Analysis, 269–273 (1983).

    Google Scholar 

  • F. Adar, “Developments in Raman Microanalysis”, Mierobeam Analysis, 67–73 (1981).

    Google Scholar 

  • S.C. Israel, “Mass Spectroscopy of Polymers” in Flame-Retard. Polym. Mater., M. Lewin, S.M. Atlas and E.M. Pearce, eds., Plenum: New York, 1982, 201–232.

    Google Scholar 

  • F.A. Bovey, “NMR of Polymers”, Pure Appl. Chem., 54, 559–568 (1982).

    Article  CAS  Google Scholar 

  • H. Sillescu, “NMR–Polymers”, Pure Appl. Chem., 54, 619–626 (1982).

    Article  CAS  Google Scholar 

  • V.J. McBrierty and D.C. Douglass, “NMR–Polymers”, J. Polym. Sci., Macromol. Rev., 16, 295–366 (1981).

    Article  CAS  Google Scholar 

  • F. Bovey, “High Resolution NMR of Macromolecules”, Academic Press: New York, 1972.

    Google Scholar 

  • D. Hummel and F. Sholl, “Infrared Analysis of Polymers”, Halsted: New York, 1969.

    Google Scholar 

Chromatography

  • M.G. Rawdon and T.A. Norris, “Supercritical Fluid Chromatogr. as a Routine Analytical Technique”, Am. Lab., 17–23 (May 1984).

    Google Scholar 

  • W. Jennings, “The Renaissance in Analytical Chromatography”, Am. Lab., 14–32 (Jan. 1984).

    Google Scholar 

  • J.C. Touchstone and M.F. Dobbins, “Practice of Thin Layer Chromatography”, 2nd Ed., John Wiley & Sons, Interscience: New York, 1983.

    Google Scholar 

  • F.P. Schmitz and E. Klesper, “Supercritical Fluid Chromoatography”, Polym. Commun., 24, 142 (1983).

    CAS  Google Scholar 

  • G.L. Hagnauer, “Size Exclusion Chromatography”, Anal. Chem., 264R–276R (1982).

    Google Scholar 

  • D.W. Armstrong and K.H. Bui, “Nonaqueous Reverse Phase HPLC”, Anal. Chem., 54, 706–708 (1982).

    Article  CAS  Google Scholar 

  • C.G. Smith, N.E. Skelly, R.A. Solomon, and C.D. Chow, “CRC Handbook of Chromatography: Polymers”, CRC Press: Boca Raton, FL, 1982.

    Google Scholar 

  • T. Provder, ed., “Size Exclusion Chromatography: Methodology and Characterization of Polymers and Related Materials”, ACS Symp. Ser., 245, Am. Chem. Soc.: Washington, D.C., 1984.

    Google Scholar 

  • T. Provder, ed., “Size Exclusion Chromatography (GPC)”, ACS Symp. Ser., 138, Am. Chem. Soc.: Washington, D.C., 1980.

    Google Scholar 

  • J. Cazes, ed., “Liquid Chromatography of Polymers and Related Materials”, Chromatogr. Sci. Ser., Vol. 8, Marcel Dekker: New York, 1977.

    Google Scholar 

  • J. Cazes and X. Delamare, eds., “Liquid Chromatography of Polymers and Related Materials II”, Chromatogr. Sci. Ser., Vol. 13, Marcel Dekker: New York, 1980.

    Google Scholar 

  • J. Cazes, ed., “Liquid Chromatography of Polymers and Related Materials”, Chromatogr. Sci. Ser., Vol. 19, Marcel Dekker: New York, 1981.

    Google Scholar 

  • G.L. Hagnauer and D.A. Dunn, “High Performance Liquid Chromatography: A Reliable Technique for Epoxy Resin Prepreg Analysis”, Ind. Eng. Chem. Prod. Res. Dev., 21, 68–73 (1982).

    Article  CAS  Google Scholar 

  • G.L. Hagnauer, “Analysis of Commercial Epoxies by HPLC and GPC”, Ind. Res. Dev., 23 (4), 128–133 (1981).

    CAS  Google Scholar 

  • W.W. Yau, J.J. Kirkland, and D.D. Bly, “Modern Size Exclusion Chromatography”, John Wiley & Sons, Interscience: New York, 1979.

    Google Scholar 

  • L.R. Snyder and J.J. Kirkland, “Introduction to Modern Liquid Chromatography”, 2nd Ed., John Wiley & Sons, Interscience: New York, 1979.

    Google Scholar 

  • M.P. Stevens, “Characterization and Analysis of Polymers by Gas Chromatography”, Marcel Dekker: New York, 1969.

    Google Scholar 

Dilute Solution Techniques

  • J.J. Hermans, ed., “Polymer Solution Properties, Part II: Hydrodynamics and Light Scattering”, Dowden, Hutchinson & Ross: Stroudsburg, PA, 1978.

    Google Scholar 

  • P.E. Slade, Jr., ed., “Techniques and Methods of Evaluation: Polymer Molecular Weights, Part I”, Marcel Dekker: New York, 1975.

    Google Scholar 

  • P.E. Slade, Jr., ed., “Techniques and Methods of Evaluation: Polymer Molecular Weights, Part II”, Marcel Dekker: New York, 1975.

    Google Scholar 

  • H. Cantow, “Polymer Fractionation”, Academic Press: New York, 1967.

    Google Scholar 

  • H. Morawetz, “Macromolecules in Solution”, John Wiley & Sons, Interscience: New York, 1966.

    Google Scholar 

Light Scattering

  • V.B. Elings and D.F. Nicoli, “Submicron Partical Sizing by Dynamic Light Scattering”, Am. Lab., 34–40 (June 1984).

    Google Scholar 

  • B. Chu, “Laser Light Scattering”, Academic Press: New York, 1974.

    Google Scholar 

  • M.B. Huglin, ed., “Light Scattering from Polymer Solutions”, Academic Press: New York, 1972.

    Google Scholar 

  • L. Alexander, “X-Ray Diffraction Methods in Polymer Science”, John Wiley & Sons: New York, 1969.

    Google Scholar 

Rheology

  • S. Wu, “Characterization of Polymer Molecular Weight Distribution by Dynamic Melt Rheometry”, ACS Polym. Mat. Sci. Eng., 50, 43–47 (1984).

    CAS  Google Scholar 

  • J.D. Ferry, “Viscoelastic Properties of Polymers”, 3rd Ed., John Wiley & Sons: New York, 1980.

    Google Scholar 

  • N.G. Kumar, “Viscosity-Molecular Weight-Temperature-Shear Rate Relationships of Polymer Melts: A Literature Review”, J. Polym. Sci., Macromol. Rev., 15, 255–325 (1980).

    Article  CAS  Google Scholar 

  • F.R. Eirich, ed., “Rheology: Theory and Applications”, Vol. 5, Academic Press: New York, 1969.

    Google Scholar 

Mechanical

  • C. Gramelt, “A New Approach for Determining Mechanical Properties of Thermoset Resins During the Cure Cycle”, Am. Lab., 102–109 (Jan. 1984).

    Google Scholar 

  • S. Wu, “Characterization of Polymer Molecular Weight Distribution by Dynamic Melt Rheology”, Am. Chem. Soc., Polym. Mat. Sci. Eng. Proc., 50, 43 (1984).

    CAS  Google Scholar 

  • B.E. Read and G.D. Dean, “The Determination of Dynamic Properties of Polymers and Composites”, John Wiley & Sons: New York, 1978.

    Google Scholar 

  • L.E. Nielsen, “Mechanical Properties of Polymers and Composites”, Vol. 1, Dekker: New York, 1974.

    Google Scholar 

  • L.E. Nielsen, “Mechanical Properties of Polymers and Composites”, Vol. 2, Dekker: New York, 1974.

    Google Scholar 

  • I.M. Ward, “Mechanical Properties of Solid Polymers”, John Wiley & Sons: New York, 1971.

    Google Scholar 

General References

  • I.M. Ward, “Mechanical Properties of Solid Polymers”, John Wiley & Sons: New York, 1971.

    Google Scholar 

  • C.G. Smith, N.H. Mahle, and C.D. Chow, “Analysis of High Polymers”, Anal. Chem., 55, 156R–164R (1983).

    Article  CAS  Google Scholar 

  • C D. Carver, ed., “Polymer Characterization”, Adv. Chem. Ser., 203, Am. Chem. Soc.: Washington, D.C., 1983.

    Google Scholar 

  • J.V. Dawkins, ed., “Developments in Polymer Characterization”, Vol. 3, Applied Science Publishers: London, 1982.

    Google Scholar 

  • J.V. Dawkins, ed., “Developments in Polymer Characterization”, Vol. 4, Applied Science Publishers: London, 1983.

    Google Scholar 

  • A.H. Landrock, “Handbook-Plastics Flammability and Combustion Toxicology”, Noyes Publishing: Park Ridge, NJ, 1983.

    Google Scholar 

  • L.S. Bark and N.S. Allen, eds., “Analysis of Polymer Systems”, Applied Science Publishers: London, 1982.

    Google Scholar 

  • “Proceedings of the Critical Review: Techniques for the Characterization of Composite Materials”;AMMRC MS82-3 (1982).

    Google Scholar 

  • F.A. Bovey, “Chain Structure and Conformation of Macromolecules”, Academic Press: New York, 1982.

    Google Scholar 

  • D.O. Hummel and F. Scholl, Atlas of Polymer and Plastics Analysis. Vol. 3, Additives and Processing Aids, Verlag Chemie International: New York, 1981.

    Google Scholar 

  • C.F. Cullis and M.M. Hirschler, “The Combustion of Organic Polymers”, Clarendon Press: Oxford, UK, 1981.

    Google Scholar 

  • J.F. Rabek, “Experimental Methods in Polymer Chemistry”, John Wiley & Sons, Interscience: New York, 1980.

    Google Scholar 

  • J.L. Koenig, “Chemical Microstructure of Polymer Chains”, John Wiley & Sons, Interscience: New York, 1980.

    Google Scholar 

  • Z. Tadmor and C.G. Gogos, “Principles of Polymer Processing”, John Wiley & Sons, Interscience: New York, 1979.

    Google Scholar 

  • A.R. Blythe, Electrical Properties of Polymers, Cambridge University Press: Cambridge, 1979.

    Google Scholar 

  • “Proceedings of the TTCP-3 Critical Review: Techniques for the Characterization of Polymeric Materials”, AMMRC MS 7 7-2, ADA036082 (Jan. 1977).

    Google Scholar 

  • R.J. Samuels, “Structured Polymer Properties”, John Wiley & Sons: New York, 1974.

    Google Scholar 

  • J.M. Schultz, “Polymer Materials Science”, Prentice-Hill: Englewood Cliffs, NJ, 1974.

    Google Scholar 

  • M. Ezrin, ed., “Polymer Molecular Weight Methods”, Adv. Chem. Ser., 125, Am. Chem. Soc.: Washington, D.C., 1973.

    Google Scholar 

  • J. Green and R. Dietz, eds., “Industrial Polymers: Characteri-zation by Molecular Weight”, Transcrypta: London, 1973.

    Google Scholar 

  • “Characterization of Macromolecular Structure”, Pub. 1573, Natl. Acad. Sci.: Washington, D.C., 1968.

    Google Scholar 

  • W. Wake, “The Analysis of Rubber and Rubber Like Polymers”, John Wiley & Sons: New York, 1968.

    Google Scholar 

  • M.L. Miller, “The Structure of Polymers”, Reinhold: New York, 1966.

    Google Scholar 

  • H.E. Haslem and H.A. Willis, “Identification and Analysis of Plastics”, Van Nostrand: Princeton, NJ, 1965.

    Google Scholar 

References

  1. AS TM D4000 “Guide for Classification System for Plastic Mate rials,” 1984 Annual Book of ASTM Standards, Vol. 08.03, ASTM: Philadelphia, PA (1984).

    Google Scholar 

  2. D.W. Van Krevelen, “Properties of Polymers - Their Estimation and Correlation with Chemical Structure,” Elsevier, New York, (1976).

    Google Scholar 

  3. J. Brandrup and E.H. Immergut, Editors, “Polymer Handbook,” 2nd Edition, John Wiley & Sons, New York, (1975).

    Google Scholar 

  4. J.A. Riddick and W. B. Bunger, “Organic Solvents,” 3rd Edition, John Wiley & Sons: Interscience, New York, (1970).

    Google Scholar 

  5. “Encyclopedia of Polymer Science and Technology,” H.F. Mark, N.G. Gaylord and M.M. Bikales, Editors, Interscience Publishers: John Wiley & Sons, Inc., New York, (1967).

    Google Scholar 

  6. “Handbook of Plastics and Elastomers,” C.A. Harper, Editor, McGraw-Hill, New York, (1975).

    Google Scholar 

  7. ASTM D1898 “Recommended Practice for Sampling of Plastics,” 1984 Annual Book of ASTM Standards, Vol. 08.02; ASTM: Philadelphia, PA (1984).

    Google Scholar 

  8. a ASTM D3896 “Standard Method for Rubber from Synthetic Sources - Sampling,” 1984 Annual Book of ASTM Standards, ASTM: Philadelphia, PA (1984).

    Google Scholar 

  9. b ASTM D1485 “Standard Methods for Rubber from Natural and Synthetic Sources - Sampling and Sample Preparation,” 1984 Annual Book of ASTM Standards, ASTM: Philadelphia, PA (1984). 9. W. E. Harris and B. Kratochvil, Anal. Chem., 46, 313 (1974).

    Google Scholar 

  10. ASTM E105 “Recommended Practice for Probability Sampling of Materials,” 1984 Annual Book of ASTM Standards, ASTM: Philadelphia, PA (1984).

    Google Scholar 

  11. ASTM E171 “Specification for Standard Atmospheres for Conditioning and Testing Materials,” 1984 Annual Book of ASTM Standards, Vol. 08.03; ASTM: Philadelphia, PA (1984).

    Google Scholar 

  12. ASTM D3417 “Test Method for Heats of Fusion and Crystallization of Polymers by Thermal Analysis,” 1984 Annual Book of ASTM Standards, Vol. 08.03; ASTM: Philadelphia, PA (1984).

    Google Scholar 

  13. ASTM D3418 “Test Method for Transition Temperatures of Polymers by Thermal Analysis,” 1984 Annual Book of ASTM Standards, Vol. 08.03; ASTM: Philadelphia, PA (1984).

    Google Scholar 

  14. H.W. Siesler and K. Holland-Moritz, “Infrared and Raman Spectroscopy of Polymers,” Marcel Dekker, New York (1980).

    Google Scholar 

  15. E. L. McCaffery, “Laboratory Preparation for Macromolecular Chemistry,” p. 19, McGraw-Hill, New York (1970).

    Google Scholar 

  16. ASTM D3593 “Test Method for Molecular Weight Averages and Molecular Weight Distribution of Certain Polymers by Liquid Size-Exclusion Chromatography (Gel Permeation Chromatography- GPC) Using Universal Calibration,” 1984 Annual Book of ASTM Standards, ASTM: Philadelphia, PA (1984).

    Google Scholar 

  17. ASTM D2857 “Test Method for Dilute Solution Viscosity of Polymers,” 1984 Annual Book of ASTM Standards, Vol. 08.02; ASTM: Philadelphia, PA (1984).

    Google Scholar 

  18. B. Chu, State University of New York at Stony Brook.

    Google Scholar 

  19. J.A. Reffner, “Characterization of Polymers by Thermomicrophotometry,” Am. Lab., 29-33 April (1984).

    Google Scholar 

  20. G.L. Hagnauer and D.A. Dunn, “High Performance Liquid Chromatography: A Reliable Technique for Epoxy Resin Prepreg Analysis,” Ind. Eng. Chem. Prod. Res. Dev., 21, 68–73 (1982).

    Article  CAS  Google Scholar 

  21. G.L. Hagnauer, “Analysis of Commercial Epoxies by HPLC and GPC,” Ind. Res. Dev., 23 (4), 128–133 (1981).

    CAS  Google Scholar 

  22. G.L. Hagnauer, J.F. Sprouse, R.E. Sacher, I. Setton and M. Wood, “Evaluation of New Techniques for the Quality Control of Epoxy Resin Formulations,” AMMRC TR 78–8, (1978).

    Google Scholar 

  23. G.L. Hagnauer, “Quality Assurance of Epoxy Resin Prepregs Using Liquid Chromatography,” Polymer Composites, 1, 81– 87, (1980).

    Google Scholar 

  24. J.L. Koenig, “Quality Control and Nondestructive Evaluation Techniques for Composites Part II: Physiochemical Characterization Techniques; A State-of-the-Art Review,” AVRADCOM TR 83-F-6, Contract No. DAAG29-81-D-0100, May (1983).

    Google Scholar 

  25. D.W. Hadad, “Chemical Quality Assurance of Epoxy Resin Formulations by Gel Permeation, Liquid, and Thin Layer Chromatography,” SAMPE J., 14 (4), 4–10 (1978).

    CAS  Google Scholar 

  26. C.S. Lu and J.L. Koenig, “Raman Spectra of Epoxies,” ACS Div. Org. Coat, Plast. Chem., 32 (1), 112 (1972).

    CAS  Google Scholar 

  27. C.F. Poranski, Jr., W. B. Moniz, D. L. Birkle, J. T. Kopfle and S.A. Sojka, “Carbon-13 and Proton NMR Spectra for Characterizing Thermosetting Polymer Systems I”. Epoxy Resins and Curing Agents,: NRL Report 8092, June (1977).

    Google Scholar 

  28. J.S. Chen and A.B. Hunter, “Development of Quality Assurance Methods for Epoxy Graphite Prepreg,” NASA CR-3531, NAS 1. 26: 3531, (1982).

    Google Scholar 

  29. J.K. Gillham, Characterization of Thermosetting Materials by TBA,: Polym. Eng. Sci., 16, 353 (1976).

    Google Scholar 

  30. N.S. Schnieder, J.F. Sprouse, G.L. Hagnauer and J.K. Gillham, “DSC and TBA Studies of the Curing Behavior of Two Dicy- Containing Epoxy Resins,” Polym. Eng. Sci., 19, 304 (1979).

    Article  Google Scholar 

  31. D. Crozier and F. Tervet, “Rheological Characterization of Epoxy Prepreg Resins,” SAMPE J, 12-16, Nov/Dec (1982).

    Google Scholar 

  32. W.E. Baumgartner and Tom Ricker, “Computer Assisted Dielectric Cure Monitoring in Material Quality and Cure Process Control,” SAMPE J., 6–16, Jul/Aug (1983).

    Google Scholar 

  33. S.D. Senturia, N.F. Sheppard Jr., H.L. Lee and S.B. Marshall,“Cure Monitoring and Control with Combined Dielectric/ Temperature Probes,” SAMPE J., 22–26, Jul/Aug (1983).

    Google Scholar 

  34. G.L. Hagnauer and D.A. Dunn, Dicyandiamide Analysis and Solubility in Epoxy Resins,: J. Appl. Polym. Sci., 26, 1837–1846 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Hagnauer, G.L. (1986). Polymers and Polymer Precursor Characterization. In: McCauley, J.W., Weiss, V. (eds) Materials Characterization for Systems Performance and Reliability. Sagamore Army Materials Research Conference Proceedings, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2119-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2119-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9253-1

  • Online ISBN: 978-1-4613-2119-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics