Structure/Property Relationships in High-Strength Steels

  • G. B. Olson
Part of the Sagamore Army Materials Research Conference Proceedings book series (PHAE, volume 26)


Cyril Smith1 has called attention to the importance of a structural hierarchy in materials. Although the structural elements of concern to materials science span finite size limits ranging from atomic dimensions to the scale of a manufactured component, the structural hierarchy within these limits is of infinite complexity, so that we can never expect to fully characterize the structure of any real material. This may make the task of understanding structure/property relationships seem impossible, but the situation is not quite so hopeless if we accept the dual nature of structure/ property relationships emphasized by Morris Cohen2. While we tend to think of properties as controlled by structure, it is the nature of the intellectual exercise of materials science that we can equally well consider structure to be controlled by properties. That is, what we see when we look in a microscope is a function of what we are trying to explain.


Martensitic Steel Shear Instability Rapid Solidification Processing Alloy Carbide Transformation Plasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. S. Smith, A Search for Structure, MIT Press, (1978).Google Scholar
  2. 2.
    M. Cohen, “Unknowables in the Essence of Materials Science and Engineering,” J. Mater. Sci, and Eng. 25, p. 3 (1976).CrossRefGoogle Scholar
  3. 3.
    K. A. Taylor, “The Aging and First Stage of Tempering of Fe-Ni-C Martensites,” Sc.D. Thesis, MIT, June (1985).Google Scholar
  4. 4.
    L. Chang, A. Cerezo, G. D. W. Smith, M. K. Miller, M. G. Burke, S. S. Brenner, K. A. Taylor, T. Abae, and G. B. Olson, J. de Physique 45, C9–409 (1984).Google Scholar
  5. 5.
    W. K. Choo and R. Kaplow, Acta Metall. 21, p. 725 (1973).CrossRefGoogle Scholar
  6. 6.
    H. Ino, T. Ito, S. Nasu, and U. Gosner, Acta Metall. 30, p. 9 (1982).CrossRefGoogle Scholar
  7. 7.
    G. B. Olson and M. Cohen, Metall. Trans. A 14A, p. 1057 (1983).Google Scholar
  8. 8.
    R. L. Brown, H. J. Rack, and M. Cohen, Mater. Sci. Eng. 21, p. 25 (1975).CrossRefGoogle Scholar
  9. 9.
    G. R. Speich, D. S. Dabkowski and L. F. Porter, Metall. Trans. 4, p. 303 (1973).CrossRefGoogle Scholar
  10. 10.
    J. E. Krzanowski, AMMRC unpublished research.Google Scholar
  11. 11.
    K. Stiller, L. E. Svensson, P. R. Howell, W. Rong, H. 0. Andren, and G. L. Dunlop, Acta Metall. 32, p. 1457 (1984).CrossRefGoogle Scholar
  12. 12.
    L. Chang and G. D. W. Smith, Oxford University, unpublished research.Google Scholar
  13. 13.
    G. L. Dunlop and R. W. K. Honeycombe, Metal. Sci. J. 12, p. 367 (1978).CrossRefGoogle Scholar
  14. 14.
    J. Vander Avyle, ScD. Thesis, MIT, (1974).Google Scholar
  15. 15.
    G. B. Olson, M. Azrin, and N. J. Tsangarakis, Proc. 29th Sagamore Army Materials Conference - Part II AMMRC MS84-2, p. 139 (1984).Google Scholar
  16. 16.
    J. G. Cowie, M. Azrin, and G. B. Olson, AMMRC, unpublished research.Google Scholar
  17. 17.
    G. Y. Lai, W. E. Wood, R. A. Clark, V. F. Zackay, and E. R. Parker, Metall. Trans. 5, p. 1663 (1974).CrossRefGoogle Scholar
  18. 18.
    R. O. Ritchie, B. Francis, and W. L. Server, Metall. Trans. A 7A, p. 831 (1976).CrossRefGoogle Scholar
  19. 19.
    L. Soffa, and A. Hirko, Hughes Helicopters, Inc., private communication.Google Scholar
  20. 20.
    M. Suga, J. L. Goss, G. B. Olson, and J. B. Vander Sande, in Proc. 2nd Intl. Conf. Rapid Solidification Processing: Principles and Technologies ed. R. Mehrabian, B. H. Kear, and M. Cohen (Claitor’s, Baton Rouge), p. 364 (1980).Google Scholar
  21. 21.
    C. Y. Hsu, “Grain-Growth Mechanisms in Rapidly Solidified Steels,” Sc.D. Thesis, MIT, February (1984).Google Scholar
  22. 22.
    P.M. Fleyshman, “Fracture Toughness of Rapidly Solidified High Strength Steels,” S.M. Thesis, MIT, September (1982).Google Scholar
  23. 23.
    G. M. Olson, in Deformation, Processing, and Structure, ed. G. Krauss ( ASM, Metals Park ), p. 391 (1983).Google Scholar
  24. 24.
    R. H. Leal, “Transformation Toughening of Metastable Austenitic Steels,” Sc.D. Thesis, MIT, June (1984).Google Scholar
  25. 25.
    A. Needleman and J. R. Rice, in Mechanics of Metal Sheet Forming, ed. D. P. Koistinen and N. M. Wang (Plenum, NY), p. 237 (1978).CrossRefGoogle Scholar
  26. 26.
    G. Sandoz, Metall. Trans. 3, p. 1169 (1972).CrossRefGoogle Scholar
  27. 27.
    S. K. Banerjee, C. J. McMahon, Jr., and H. C. Feng, Metall. Trans. A 9A, p. 237 (1978).CrossRefGoogle Scholar
  28. 28.
    K. H. Johnson, Adv. Quantum Chem. 7, p. 143 (1973)CrossRefGoogle Scholar
  29. 29.
    C. Y. Yang, Sc.D. Thesis, MIT, (1977).Google Scholar
  30. 30.
    M. E. Eberhart and K. H. Johnson, MIT, private communication.Google Scholar
  31. 31.
    M. F. Ashby, F. Spaepen, and S. Williams, Acta Metall. 26, p. 133 (1978).CrossRefGoogle Scholar
  32. 32.
    R. P. Messmer and C. L. Briant, Acta Metall. 30, p. 457 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • G. B. Olson
    • 1
    • 2
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.WatertownUSA

Personalised recommendations