Skip to main content

Neuronal Mechanisms Underlying Plastic Postural Changes in Decerebrate, Reflexively Standing Cats

  • Chapter
Neural Mechanisms of Conditioning

Abstract

Our previous studies (Mori et al., 1980a, 1982) have demonstrated brain stem areas subserving “setting” and “resetting” of the extensor muscle tone related to the reflex standing posture in acute precollicular-postmammillary decerebrate (mesencephalic) cats. Stimulation of the dorsal part of the caudal tegmental field (DTF) along the midline (Horsley-Clarke coordinates P3 to P7, H-4.5 to H-6) decreased the tone of the hindlimb muscles, with the force through the hindlimb and the tonic discharge of extensor muscles decreasing. Stimulation of the ventral part of the caudal tegmental field (VTF) along the midline area (P3 to P7, H-7.5 to H-9.5) increased the tone of the hindlimb muscles, with the force through the hindlimb and the tonic discharge of extensor muscles increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaral, D.G. and Sinnamon, H.M., 1977, The locus coeruleus: Neurobiology of a central noradrenergic nucleus, Prog. Neurobiol. 9:147–196.

    Google Scholar 

  • Atsuta, Y., Sakamoto, T., and Mori, S., 1985, Dynamic behavior of stretch reflex loop in the acute decerebrate, standing cat, Electroenceph. Clin. Neurophysiol. 6: lip.

    Google Scholar 

  • Berman, A.L., 1968, The Brain Stem of the Cat. A Cytoarchitectonic Atlas with Stereotaxic Coordinates, University of Wisconsin Press, Madison.

    Google Scholar 

  • Brock, L.G., Coombs, J.S., and Eccles, J.C., 1953, Intracellular recording from antidromically activated motoneurons, J. Physiol. (London) 122: 429–461.

    CAS  Google Scholar 

  • Burke, R.E., 1967, Composite nature of the monosynaptic excitatory postsynaptic potential, J. Neurophysiol. 30: 1114–1137.

    PubMed  CAS  Google Scholar 

  • Burke, R.E. and Rudomin, P., 1977, Spinal neurons and synapses, in: Handbook of Physiology, Section 1, The Nervous System, Volume 2, Motor Control ( J.M. Brookhart, V.B. Mountcastle, and V.B. Brooks, eds.), American Physiological Society, Bethesda, Maryland, pp. 877–944.

    Google Scholar 

  • Cameron, W.E., Binder, M.D., Botterman, B.R., Reinking, R.M., and Stuart, D.G., 1981, “Sensory Partitioning” of cat medial gastrocnemius muscle by its muscle spindles and tendon organs, J. Neurophysiol. 46:32–47.

    Google Scholar 

  • Chandler, S.H., Chase, M.H., and Nakamura, Y., 1980, Intracellular analysis of synaptic mechanisms controlling trigeminal motoneuron activity during sleep and wakefulness, J. Neurophysiol. 44: 359–371.

    PubMed  CAS  Google Scholar 

  • Cook, W.A., Jr. and Cangiano, A., 1972, Presynaptic and postsynaptic inhibition of spinal motoneurons, J. Neurophysiol. 35: 389–403.

    PubMed  Google Scholar 

  • Coombs, J.S., Eccles, J.C., and Fatt, P., 1955a, The electrical properties of the motoneurone membrane, J. Physiol. (London) 130: 291–325.

    CAS  Google Scholar 

  • Coombs, J.S., Eccles, J.C., and Fatt, P., 1955b, The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential, J. Physiol. (London) 130: 326–373.

    CAS  Google Scholar 

  • Coombs, J.S., Eccles, J.C., and Fatt, P., 1955c, The inhibitory suppression of reflex discharges from motoneurones, J. Physiol. (London) 130: 396–413.

    CAS  Google Scholar 

  • Eccles, J.C., 1964, The Physiology of Synapses, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Eccles, J.C., Fatt, P., and Koketsu, K., 1954, Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurons, J. Physiol. (London) 126: 524–562.

    CAS  Google Scholar 

  • Eccles, J.C., Eccles, R.M., and Lundberg, A., 1957, Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents, J. Physiol. (London) 138: 227–252.

    CAS  Google Scholar 

  • Eccles, J.C., Eccles, R.M., and Magni, F., 1961a, Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys, J. Physiol. (London) 159: 147–166.

    CAS  Google Scholar 

  • Eccles, J.C., Rosamond, M., Eccles, A., Iggo, A., and Lundberg, A., 1961b, Electrophysiological investigations on Renshaw cells, J. Physiol. (London) 157: 461–478.

    Google Scholar 

  • Eccles, J.C., Magni, F., and Willis, W.D., 1962a, Depolarization of central terminals of group I afferent fibres from muscle, J. Physiol. (London) 160: 62–93.

    CAS  Google Scholar 

  • Eccles, J.C., Schmidt, R.F., and Willis, W.D., 1962b, Presynaptic inhibition of the spinal monosynaptic reflex pathway, J. Physiol. (London) 161: 282–297.

    CAS  Google Scholar 

  • Engberg, I., Lundberg, A., and Ryall, R.W., 1968a, Reticulospinal inhibition of transmission in reflex pathways, J. Physiol. (London) 194: 201–223.

    CAS  Google Scholar 

  • Engberg, I., Lundberg, A., and Ryall, R.W., 1968b, Reticulospinal inhibition of interneurons, J. Physiol. (London) 194: 225–236.

    CAS  Google Scholar 

  • Foote, S.L., Bloom, F.E., and Aston-Jones, G., 1983, Nucleus locus ceruleus: New evidence of anatomical and physiological specificity, Physiol. Rev. 64: 844–914.

    Google Scholar 

  • Frank, K. and Fuortes, M.G.F., 1956, Stimulation of spinal motoneurons with intracellular electrodes, J. Physiol. (London) 134: 451–470.

    CAS  Google Scholar 

  • Gesteland, R.C., Howland, B., Lettwins, J.Y., and Pitts, W.H., 1959, Comments on microelectrodes, Proc. IRE 47: 1856–1862.

    Article  Google Scholar 

  • Glenn, L.L. and Dement, W.C., 1981, Membrane resistance and rheobase of hindlimb motoneurons during wakefulness and sleep, J. Neurophysiol. 46: 1076–1088.

    PubMed  CAS  Google Scholar 

  • Holstege, G. and Kuypers, H.G.J.M., 1982, The anatomy of brain stem pathways to the spinal cord in cat. A labeled amino acid tracing study, Prog. Brain Res. 57: 145–176.

    Article  PubMed  CAS  Google Scholar 

  • Houk, J.C. and Henneman, E., 1967, Responses of Golgi tendon organs to active contractions of the soleus muscle of the cat, J. Neurophysiol. 30: 466–481.

    PubMed  CAS  Google Scholar 

  • Houk, J.C. and Rymer, W.Z., 1981, Neural control of muscle length and tension, in: Handbook of Physiology, Section 1, The Nervous System, Volume 2, Motor Control ( J.M. Brookhart, V.B. Mountcastle, and V.B. Brooks, eds.), American Physiological Society, Bethesda, Maryland, pp. 257–324.

    Google Scholar 

  • Jankowska, E., Lund, S., Lundberg, A., and Pompeiano, O., 1968, Inhibitory effects evoked through ventral reticulospinal pathways, Arch. Ital. Biol. 106: 124–140.

    PubMed  CAS  Google Scholar 

  • Kuypers, H.G.J.M. and Maisky, V.A., 1975, Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci. Lett. 1: 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Lipski, J., 1981, Antidromic activation of neurones as an analytic tool in the study of the central nervous system, J. Neurosci. Methods 4: 1–32.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R., 1964, Mechanisms of supraspinal actions upon spinal cord activities. Differences between reticular and cerebellar inhibitory actions upon alpha extensor motoneurons, J. Neurophysiol. 27: 1117–1126.

    PubMed  CAS  Google Scholar 

  • Llinas, R. and Terzuolo, C.A., 1964, Mechanisms of supraspinal actions upon spinal cord activities. Reticular inhibitory mechanisms on alpha-extensor motoneurons, J. Neurophysiol. 27: 579–591.

    PubMed  CAS  Google Scholar 

  • Magoun, H.W. and Rhines, R., 1946, An inhibitory mechanism in the bulbar reticular formation, J. Neurophysiol. 9: 165–171.

    PubMed  CAS  Google Scholar 

  • Matthews, P.B.C., 1981, Muscle spindles: Their messages and their fusimotor supply, in: Handbook of Physiology, Section 1, The Nervous System, Volume 2, Motor Control ( J.M. Brookhart, V.B. Mountcastle, and V.B. Brooks, eds.), American Physiological Society, Bethesda, Maryland, pp. 189–228.

    Google Scholar 

  • Moore, R.Y. and Bloom, F.E., 1979, Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine system, Ann. Rev. Neurosci. 2: 113–168.

    Article  PubMed  CAS  Google Scholar 

  • Morales, F. and Chase, M.H., 1981, Postsynaptic control of lumber motoneuron excitability during active sleep in the chronic cat, Brain Res. 225: 279–295.

    Article  PubMed  CAS  Google Scholar 

  • Mori, S., Kawahara, K., and Sakamoto, T., 1983, Supraspinal aspects of locomotion in the mesen-cephalic cat, in: Neural Origin of Rhythmic Movements, ( A. Roberts and B.L. Roberts, eds.), Cambridge University Press, Cambridge, pp. 445–468.

    Google Scholar 

  • Mori, S., Nishimura, H., and Aoki, M., 1980a, Brain stem activation of the spinal stepping generator, in: Reticular Formation Revisited, Int. Brain Res. Monogr. Volume 6 ( J.A. Hobson and M.A.B. Brazier, eds.), Raven Press, New York, pp. 241–259.

    Google Scholar 

  • Mori, S., Aoki, M., Kawahara, K., and Sakamoto, T., 1980b, Level setting of postural muscle tonus and inhibition of locomotion by MLR stimulation, Adv. Physiol. Sci. 1: 179–182.

    Google Scholar 

  • Mori, S., Kawahara, K., Sakamoto, T., Aoki, M., and Tomiyama, T., 1982, Setting and resetting of level of postural muscle tone in decerebrate cat by stimulation of brain stem, J. Neurophysiol. 48: 737–748.

    PubMed  CAS  Google Scholar 

  • Morrison, A.R. and Pompeiano, 0., 1965, An analysis of the supraspinal influences acting on motoneurons during sleep in unrestrained cat. Responses of the alpha motoneurons to direct electrical stimulation during sleep, Arch. Ital. Biol. 103: 497–516.

    PubMed  CAS  Google Scholar 

  • Nelson, P.G. and Frank, K., 1967, Anomalous rectification in cat spinal motoneurons and effect of polarizing current on excitatory postsynaptic potentials, J. Neurophysiol. 30: 1097–1113.

    PubMed  CAS  Google Scholar 

  • Ohta, Y., Sakamoto, T., and Mori, S., 1984, The cells of origin projecting their axons to the dorsal part of the central tegmental field in the pons, J. Physiol. Soc. Jpn. 46: 377

    Google Scholar 

  • Renshaw, B., 1941, Influence of discharge of motoneurons upon excitation of neighboring motoneurons, J. Neurophysiol. 4: 167–183.

    Google Scholar 

  • Renshaw, B., 1946, Central effects of centripetal impulses in axons of spinal ventral roots, J. Neurophysiol. 9: 191–204.

    PubMed  CAS  Google Scholar 

  • Rail, W., Burke, R.E., Smith, T.G., Nelson, P.G., and Frank, K., 1967, Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons, J. Neurophysiol. 30: 1169–1193.

    Google Scholar 

  • Sakai, K., Touret, N., Salvert, D., Leger, L., and Jouvet, M., 1977, Afferent projections to the cat locus coeruleus as visualized by the horseradish peroxidase technique, Brain Res. 119: 21–41.

    Article  PubMed  CAS  Google Scholar 

  • Sakai D., Sastre, J.P. Salvert, D., Touret, M., Tohyama, M., and Jouvet, M., 1979, Tegmentoreticular projections with special reference to the muscular atonia during paradoxical sleep in the cat: An HRP study, Brain Res. 176: 233–254.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, T., Atsuta, Y., and Mori, S., 1984, Long-lasting excitability changes of soleus alpha- motoneuron induced by the midpontine stimulation in decerebrate, standing cat, J. Neurophysiol.in press

    Google Scholar 

  • Sakamoto, T., Atsuta, Y., and Mori, S., 1984, Long-lasting excitability changes of soleus alphamotoneuron induced by the midpontine stimulation in decerebrate, standing cat,J. Neurophysiol., in press.

    Google Scholar 

  • Sakamoto, T., Atsuta, Y., and Mori, S., 1983, Effects elicited by the stimulation to the dorsal part of tegmental field upon soleus alpha motoneurons in the decerebrate standing animal, Neurosci. Lett, suppl. 13: s74.

    Google Scholar 

  • Snider, R.S. and Niemer, W.T.A., 1961, Stereotaxic Atlas of the Cat Brain, University of Chicago Press, Chicago.

    Google Scholar 

  • Terzuolo, C.A., 1959, Cerebellar inhibitory and excitatory action upon spinal extensor motoneurons, Arch. Ital. Biol. 97: 316–339.

    Google Scholar 

  • Walberg, F., 1974, Crossed reticulo-reticular projections in the medulla, pons and mesencephalon, Z. Anat. Entwicklungsgesch. 143: 127–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Mori, S., Sakamoto, T., Ohta, Y. (1986). Neuronal Mechanisms Underlying Plastic Postural Changes in Decerebrate, Reflexively Standing Cats. In: Alkon, D.L., Woody, C.D. (eds) Neural Mechanisms of Conditioning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2115-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2115-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9251-7

  • Online ISBN: 978-1-4613-2115-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics