Protein Phosphorylation, K+ Conductances, and Associative Learning in Hermissenda

  • Joseph T. Neary


Research in our laboratory is directed toward investigations of the biochemical and biophysical processes that underlie associative learning in the nudibranch mollusc, Hermissenda crassicornis. Our studies to date suggest that two of these processes are protein phosphorylation and K+ conductance(s) (Neary et al., 1981; Alkon et al., 1982a), and recently we have been investigating the possible relationships between K+ conductances and protein phosphorylation. A number of studies in a variety of preparations have shown that several types of K+ conductances can be altered by intracellular injection of protein kinases, enzymes that catalyze protein phosphorylation, and by a protein inhibitor of phosphorylation (Castellucci et al., 1980; Kaczmarek et al., 1980; Levitan and Adams, 1981; DePeyer et al., 1982; Adams and Levitan, 1982; Strumwasser et al., 1982; Castellucci et al., 1982; Alkon et al., 1983a; Acosta-Urquidi et al., 1984a,b). In addition, agents that block K+ conductance can also affect protein phosphorylation (Neary and Alkon, 1983). Some of the questions that arise from these studies include: (1) what proteins are phosphorylated by the injected kinases? (2) are the modified phosphoproteins part of functional K+ channels? (3) what are the biochemical mechanisms that are involved in the modification of K+ channels by protein phosphorylation and channel blockers, i.e., activation and/or inhibition of protein kinases, phosphatases, and regulatory proteins? and (4) are the phosphoproteins that are altered following associative learning identical to those that are phosphorylated by the injected protein kinases?


Protein Phosphorylation Associative Learning Dependent Protein Kinase Pedal Ganglion Phosphorylase Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acosta-Urquidi, J., Neary, J. T., and Alkon, D. L., 1982, Ca2+ -dependent protein kinase regulation of K+ (V) currents: A possible biochemical step in associative learning of Hermissenda, Soc. Neurosci. Abstr. 8: 825.Google Scholar
  2. Acosta-Urquidi, J., Alkon, D. L., Connor, J. A., and Neary, J. T., 1983, Intracellular injection of a Ca++-dependent protein kinase amplifies Ca++-mediated inactivation of a transient K+ current (IA) in Hermissenda giant neurons, Soc. Neurosci. Abstr. 9: 501.Google Scholar
  3. Acosta-Urquidi, J., Alkon, D. L., and Neary, J. T., 1984a, Ca++ dependent protein kinase injection in a photoreceptor mimics biophysical effects of associative learning, Science 224: 1254–1257.PubMedCrossRefGoogle Scholar
  4. Acosta-Urquidi, J., Neary, J. T., Goldenring, J. R., Alkon, D., L., and DeLorenzo, R. J., 1984b, Modulation of ICa and late K currents by intrasomatic injection of Ca-calmodulin dependent protein kinase in Hermissenda giant neurons, Soc. Neurosci. Abstr. 10: 1129.Google Scholar
  5. Adams, W. B. and Levitan, I. B., 1982, Intracellular injection of protein kinase inhibitor blocks the seroton-induced increase in K+ conductance in Aplysia neuron R15, Proc. Natl. Acad. Sci. USA 79: 3877–3880.PubMedCrossRefGoogle Scholar
  6. Alkon, D. L., 1979, Voltage-dependent calcium and potassium ion conductances: A contingency mech-anism for an associative learning model, Science 205: 810–816.PubMedCrossRefGoogle Scholar
  7. Alkon, D. L., 1982-1983, Regenerative change of voltage-dependent Ca2+ and K+ currents encode a learned stimulus association, J. Physiol. (Paris) 78: 700–706.Google Scholar
  8. Alkon, D. L., Lederhendler, I., and Shoukimas, J. J., 1982a, Primary changes of membrane currents during retention of associative learning, Science 215: 693–695.PubMedCrossRefGoogle Scholar
  9. Alkon, D. L., Shoukimas, J. J., and Heldman, E., 1982b, Calcium-mediated decrease of a voltage- dependent K+ current, Biophys. J. 40: 245–250.PubMedCrossRefGoogle Scholar
  10. Alkon, D. L, Acosta-Urquidi, J., Olds, J., Kuzma, G., and Neary, J. T., 1983a, Protein kinase injection reduces voltage-dependent potassium currents, Science 219: 303–306.PubMedCrossRefGoogle Scholar
  11. Alkon, D. L., Farley, J., Hay, B., and Shoukimas, J. J., 1983b, Inactivation of Ca++ -dependent K+ current can occur without significant Ca2+ current inactivation, Soc. Neurosci. Abstr. 9: 1188.Google Scholar
  12. Bernier, L., Castellucci, V. F., Kandel, E. R., and Schwartz, J. H., 1982, Facilitatory transmitter causes a selective and prolonged increase in adenosine 3′: 5′-monophosphate in sensory neurons mediating the gill and siphon withdrawal reflex in Aplysia, J. Neurosci. 2: 1682–1691.PubMedGoogle Scholar
  13. Byrne, J. H., Shapiro, E., Dieringer, N., and Koester, J., 1979, Biophysical mechanisms contributing to inking behavior in Aplysia, J. Neurophysiol. 42: 1233–1250.PubMedGoogle Scholar
  14. Castellucci, V. F., Kandel, E. R., Schwartz, J. H., Wilson, F. D., Nairn, A. C., and Greengard, P., 1980, Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia, Proc. Natl. Acad. Sci. USA 77: 7492–7496.PubMedCrossRefGoogle Scholar
  15. Castellucci, V. F., Nairn, A., Greengard, P., Schwartz, J. H., and Kandel, E. R., 1982, Inhibitor of adenoisine 3′: 5′-monophosphate-dependent protein kinase blocks presynaptic facilitation in Aplysia, J. Neurosci. 2: 1673–1681.PubMedGoogle Scholar
  16. Cleveland, D. W., Fischer, S. G., Kirschner, M. W., and Laemmli, U. K., 1977, Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis, J. Biol. Chem. 252: 1102–1106.PubMedGoogle Scholar
  17. Cohen, P., 1973, The subunit structure of rabbit-skeletal muscle phosphorylase kinase, and the molecular basis of its activation reactions, Eur. J. Biochem. 34: 1–14.PubMedCrossRefGoogle Scholar
  18. Cohen, P., 1982, The role of protein phosphorylation in neural and hormonal control of cellular activity, Nature 296: 613–620.PubMedCrossRefGoogle Scholar
  19. Connor, J. and Alkon, D. L., 1982, Light-induced changes of intracellular Ca2+ in Hermissenda photoreceptors measured with arsenazo III, Soc. Neurosci. Abstr. 8: 944.Google Scholar
  20. Connor, J. and Alkon, D. L., 1984, Light- and voltage-dependent increases of calcium ion concentration in molluscan photoreceptors, J. Neurophysiol. 51: 745–752.PubMedGoogle Scholar
  21. Crow, T., 1982, Sensory neuronal correlates of associative learning in Hermissenda, Soc. Neurosci. Abstr. 8: 824.Google Scholar
  22. Crow, T., 1983, Conditioned modification of locomotion in Hermissenda crassicornis: Analysis of time-dependent associative and non-associative components, J. Neurosci. 3: 2621–2628.PubMedGoogle Scholar
  23. Crow, T. J., and Alkon, D. L., 1978, Retention of an associative behavioral change in Hermissenda, Science 201: 1239–1241.PubMedCrossRefGoogle Scholar
  24. Crow, T. J. and Alkon, D. L., 1980, Associative behavioral modification in Hermissenda: Cellular correlates, Science 209: 412–414.PubMedCrossRefGoogle Scholar
  25. DePeyer, J. E., Cachelin, A. B., Levitan, I. B., and Reuter, H., 1982, Ca++-activated K+ conductance in internally perfused snail neurons is enhanced by protein phosphorylation, Proc. Natl. Acad. Sci. USA 79: 4207–4211.CrossRefGoogle Scholar
  26. Farley, J. and Alkon, D. L., 1983, Changes in Hermissenda type B photoreceptors involving a voltage-dependent Ca++ current and a Ca++-dependent K+ current during retention of associative learning. Soc. Neurosci. Abstr. 9: 167.Google Scholar
  27. Forman, R., Alkon, D. L., Sakakibara, M., Harrigan, J., Lederhendler, I., and Farley, J., 1984, Changes in IA and Ic but not in INa accompany retention of conditioned behavior in Hermissenda, Soc. Neurosci. Abstr. 10: 121.Google Scholar
  28. Giller, E., Jr. and Schwartz, J. H., 1971, Choline acetyltransferase in identified neurons of abdominal ganglion of Aplysia californica, J. Neurophysiol. 34: 93–107.PubMedGoogle Scholar
  29. Hemmings, B. A., Yellowlees, D., Kernohan, J. C., and Cohen, P., 1981, Purification of glycogen synthase kinase 3 from rabbit skeletal muscle. Copurification with the activating factor (FΑ) of the (Mg-ATP) dependent protein phosphatase, Eur. J. Biochem. 119: 443–451.PubMedCrossRefGoogle Scholar
  30. Jerussi, T. P. and Alkon, D. L., 1981, Ocular and extraocular responses of identifiable neurons in pedal ganglia of Hermissenda crassicornis, J. Neurophysiol. 46: 659–671.PubMedGoogle Scholar
  31. Kaczmarek, L. K., Jennings, K. R., Strumwasser, F., Nairn, A. C., Walter, U., Wilson, F. D., and Greengard, P., 1980, Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture, Proc. Natl. Acad. Sci. USA 77: 7487–7491.PubMedCrossRefGoogle Scholar
  32. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227: 680–685.PubMedCrossRefGoogle Scholar
  33. Laskey, R. A. and Mills, A. D., 1977, Enhanced autoradiographic detection of 32P and 125I using intensifiying screens and hypersensitized film, FEBS Lett. 82: 314–316.PubMedCrossRefGoogle Scholar
  34. Lemos, J. R., Novak-Hofer, I., and Levitan, I. B., 1982, Serotonin alters the phosphorylation of specific proteins inside a single living nerve cell, Nature, 298: 64–65.PubMedCrossRefGoogle Scholar
  35. Levitan, I. B. and Adams, W. B., 1981, Cyclic AMP modulation of a specific ion channel in an identified nerve cell: Possible role for protein phosphorylation, Adv. Cyclic Nucleotide Res. 14: 647–653.PubMedGoogle Scholar
  36. Levitan, I. B., Madsen, C. J., and Barondes, S. H., 1974, cAMP and amine effects on phosphorylation of specific proteins in abdominal ganglion of Aplysia californica; localization and kinetic analysis, J. Neurobiol. 5: 511–525.Google Scholar
  37. Levitan, I. B., Adams, W. B., Lemos, J. R., and Novak-Hofer, I., 1983, A role for protein phosphorylation in the regulation of electrical activity of an identified nerve cell, Progress in Brain Res. 58: 71–76.CrossRefGoogle Scholar
  38. Neary, J. T., 1984, Biochemical correlates of associative learning: Protein phosphorylation in Hermissenda crassicornis, a nudibranch mollusc, in Primary Neural Substrates of Learning and Behavioral Change ( D. L. Alkon and J. Farley, eds.), Cambridge University Press, New York pp. 325–336.Google Scholar
  39. Neary, J. T. and Alkon, D. L., 1983, Protein phosphorylation/dephosphorylation and the transient, voltage-dependent potassium conductance in Hermissenda crassicornis, J. Biol. Chem. 258: 8979–8983.PubMedGoogle Scholar
  40. Neary, J. T., Crow, T. and Alkon, D. L., 1981, Change in a specific phosphoprotein band following associative learning in Hermissenda, Nature 293: 658–660.PubMedCrossRefGoogle Scholar
  41. Neary, J. T., Acosta-Urquidi, J., Tengelsen, L. A., Kuzirian, A. M., and Alkon, D. L., 1983, Protein phosphorylation in a single identifiable molluscan neuron, Soc. Neurosci. Abstr. 9: 301.Google Scholar
  42. Neary, J. T., DeRiemer, S. A., Kaczmarek, L. K., and Alkon, D. L., 1984, Ca2+ and cyclic AMP regulation of protein phosphorylation in the Hermissenda nervous system, Soc. Neurosci. Abstr. 10: 805.Google Scholar
  43. Neary, J. T., DeRiemer, S. A., Kaczmarek, L. K., and Alkon, D. L., 1984, Ca2+ and cyclic AMP regulation of protein phosphorylation in the Hermissenda nervous system, Soc. Neurosci. Abstr. 10: 805.Google Scholar
  44. O’Farrell, P. H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250: 4007–4021.PubMedGoogle Scholar
  45. Ono, J. K. and McCaman, R. E., 1979, Measurement of endogenous transmitter levels after intracellular recording, Brain Res. 165: 156–160.PubMedCrossRefGoogle Scholar
  46. Pant, H. C., Terakawa, S., Yoshioka, T., Tasaki, I., and Gainer, H., 1979, Evidence for the utilization of extracellular [γ-32P]ATP for the phosphorylation of intracellular proteins in the squid giant axon, Biochim. Biophys. Acta 582: 107–114.PubMedGoogle Scholar
  47. Pant, H. C., Gallant, P. E., Cohen, R., Neary, J. T., and Gainer, H., 1983, Calcium-dependent 4- aminopyridine stimulation of protein phosphorylation in squid optic lobe synaptosomes, Cell Mol. Neurobiol. 3: 223–238.PubMedCrossRefGoogle Scholar
  48. Rasmussen, H., 1981, Calcium and cAMP as Synarchic Messengers, Wiley, New York.Google Scholar
  49. Strumwasser, F., Kaczmarek, L. K., and Jennings, K. R., 1982, Intracellular modulation of membrane channels by cyclic AMP-mediated protein phosphorylation in peptidergic neurons of Aplysia, Fed. Proc. 41: 2933–2939.PubMedGoogle Scholar
  50. Thesleff, S., 1980, Aminopyridines and synaptic transmission, Neuroscience 5: 1413–1419.PubMedCrossRefGoogle Scholar
  51. Thompson, S. H., 1977, Three pharmacologically distinct potassium channels in molluscan neurones, J. Physiol. (London) 265: 465–488.Google Scholar
  52. Thompson, S. H., 1982, Aminopyridine block of transient potassium current, J. Gen. Physiol. 80: 1–18.PubMedCrossRefGoogle Scholar
  53. Walsh, D. A., Perkins, J. P., Brostrom, C. O., Ho, E. S., and Krebs, E. G., 1971, Catalysis of the Phosphorylase kinase activation reaction, J. Biol. Chem. 246: 1968–1976.PubMedGoogle Scholar
  54. West, A., Barnes, E., and Alkon, D. L., 1982, Primary changes of voltage responses during retention of associative learning, J. Neurophysiol. 48: 1243–1255.PubMedGoogle Scholar
  55. Yang, S.-D., Vandenheede, J. R., and Merlevede, W., 1981, Identification of inhibitor-2 as the ATP- Mg-dependent protein phosphatase modulator, J. Biol. Chem. 256: 10231–10234.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Joseph T. Neary
    • 1
  1. 1.Section on Neural Systems, Laboratory of Biophysics, National Institute of Neurological and Communicative Disorders and StrokeNational Institutes of Health at the Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations