Skip to main content

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 8))

Abstract

Species diversity and species constancy of behavior depend upon predictable patterns of development. In some species the course of development is relatively inflexible; learning and experience appear to play minor roles…. In other species, the structure and function of the brain make possible a strong reliance on learning and experience…. The greatest conceptual problem in the development of behavior is in understanding the interaction of the two fundamental determinants of the course of development, inheritance and experience. [Brown, 1975, p. 607]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrien, J., and Roffwarg, H. P. The development of unit activity in the lateral geniculate nucleus of the kitten. Experimental Neurology, 1974, 43, 261–275.

    Article  PubMed  CAS  Google Scholar 

  • Albus, K., and Wolf, W. Early post-natal development of neuronal function in the kitten’s visual cortex: A laminar analysis. Journal of Physiology (London), 1984, 348, 153–185.

    PubMed  CAS  Google Scholar 

  • Albus, K., Wolf, W., and Beckmann, R. Orientation bias in the response of kitten LGNd neurons to moving light bars. Developmental Brain Research 1983 6, 308–313.

    Article  Google Scholar 

  • Altman, J., Brunner, R. L., and Bayer, S. A. The hippocampus and behavioral maturation. Behavioral Biology, 1973, 8, 557–594.

    Article  PubMed  CAS  Google Scholar 

  • Anker, R. L. The prenatal development of some of the visual pathways in the cat. Journal of Comparative Neurology, 1977, 173, 185–204.

    Article  PubMed  CAS  Google Scholar 

  • Anker, R. L., and Cragg, B. G. Development of the extrinsic connections of the visual cortex in the cat. Journal of Comparative Neurology, 1974, 154, 29–42.

    Article  PubMed  CAS  Google Scholar 

  • Archer, S. M., Dubin, M. W., and Stark, L. A. Abnormal development of kitten retino-geniculate connectivity in the absence of action potentials. Science, 1982, 217, 743–745.

    Article  PubMed  CAS  Google Scholar 

  • Bacon, J., and Murphey, R. K. Receptive fields of cricket giant interneurones are related to their dendritic structure. Journal of Physiology (London), 1984, 352, 601–623.

    PubMed  CAS  Google Scholar 

  • Baerends-van Roon, J. M., and Baerends, G. P. The morphogenesis of the behaviour of the domestic cat. Amsterdam: North-Holland, 1979.

    Google Scholar 

  • Barlow, H. B. Visual experience and cortical development. Nature, 1975, 258, 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, H. B., and Pettigrew, J. D. Lack of specificity of neurones in the visual cortex of young kittens. Journal of Physiology (London), 1971, 218, 98–100.

    Google Scholar 

  • Barrett, P., and Bateson, P. The development of play in cats. Behaviour 1978, 66, 106–120.

    Article  Google Scholar 

  • Bateson, P., Martin, P., and Young, M. Effects of interrupting cat mothers’ lactation with bromocriptine on the subsequent play of their kittens. Physiology and Behavior, 1981, 27, 841–845.

    Article  PubMed  CAS  Google Scholar 

  • Beckmann, R., and Albus, K. The geniculocortical system in the early postnatal kitten: An electrophysiological investigation. Experimental Brain Research, 1982, 47, 49–56.

    Article  CAS  Google Scholar 

  • Berkley, M. A., and Sprague, J. M. Striate cortex and visual acuity functions in the cat. Journal of Comparative Neurology, 1979, 187, 679–702.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, C. Developmental factors in the formation of feature extracting neurons. In F. O. Schmidt and F. G. Worden (Eds.), The neurosciences: Third study program. Cambridge, Mass.: MIT Press, 1974, pp. 105–113.

    Google Scholar 

  • Blakemore, C. The conditions required for the maintenance of binocularity in the kitten’s visual cortex. Journal of Physiology (London), 1976, 261, 423–444.

    PubMed  CAS  Google Scholar 

  • Blakemore, C., and Cooper, G. F. Development of the brain depends on the visual environment. Nature, 1970, 228, 477–478.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, C., and Tobin, E. A. Lateral inhibition between orientation detectors in the cat’s visual cortex. Experimental Brain Research 1972, 15, 439–440.

    Article  CAS  Google Scholar 

  • Blakemore, C., and Van Sluyters, R. C. Innate and environmental factors in the development of the kitten’s visual cortex. Journal of Physiology (London), 1975, 248, 663–716.

    PubMed  CAS  Google Scholar 

  • Blasdel, G. G., Mitchell, D. E., Muir, D. W., and Pettigrew, J. D. A physiological and behavioural study in cats of the effect of early visual experience with contours of a single orientation. Journal of Physiology (London), 1977, 265, 615–636.

    PubMed  CAS  Google Scholar 

  • Blass, E. M. The ontogenesis of suckling, a goal-directed behavior. In R. F. Thompson, L. H. Hicks, and V. B. Shvyrkov (Eds.), Neural mechanisms of goal directed behavior and learning. New York: Academic Press, 1980, pp. 461–470.

    Google Scholar 

  • Bonds, A. B. Development of orientation tuning in the visual cortex of kittens. In R. D. Freeman (Ed.), Developmental neurobiology of vision. New York: Plenum Press, 1979, pp. 31–49.

    Google Scholar 

  • Bonds, A. B., and Freeman, R. D. Development of optical quality in the kitten eye. Vision Research, 1978, 18, 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Boycott, B. B., and Wassle, H. The morphological types of ganglion cells of the domestic cat’s retina. Journal of Physiology (London), 1974, 240, 397–419.

    PubMed  CAS  Google Scholar 

  • Brown, J. L. The evolution of behavior. New York: Norton, 1975.

    Google Scholar 

  • Buisseret, P., and Imbert, M. Visual cortical cells: Their developmental properties in normal and dark reared kittens. Journal of Physiology (London), 1976, 255, 511–525.

    PubMed  CAS  Google Scholar 

  • Buisseret, P., and Gary-Bobo, E. Development of visual cortical orientation specificity after dark-rearing: Role of extraocular proprioception. Neuroscience Letters, 1979, 13, 259–263.

    Article  PubMed  CAS  Google Scholar 

  • Buisseret, P., Gary-Bobo, E., and Imbert, M. Ocular motility and recovery of orientational properties of visual cortical neurones in dark-reared kittens. Nature, 1978, 272, 816–817.

    Article  PubMed  CAS  Google Scholar 

  • Buisseret, P., Gary-Bobo, E., and Imbert, M. Plasticity in the kitten’s visual cortex: Effects of the suppression of visual experience upon the orientational properties of visual cortical cells. Developmental Brain Research, 1982, 4, 417–426.

    Article  Google Scholar 

  • Buisseret, P., and Singer, W. Proprioceptive signals from extraocular muscles gate experience-dependent modifications of receptive fields in the kitten visual cortex. Experimental Brain Research, 1983, 51, 443–450.

    Google Scholar 

  • Bullier, J., and Henry, G. H. Ordinal position of neurons in cat striate cortex. Journal of Neurophysiology, 1979a, 42, 1251–1263.

    PubMed  CAS  Google Scholar 

  • Bullier, J., and Henry, G. H. Neural path taken by afferent streams in striate cortex of the cat. Journal of Neurophysiology, 1979b, 42, 1264–1270.

    PubMed  CAS  Google Scholar 

  • Bullier, J., and Henry, G. H. Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. Journal of Neurophysiology, 1979c, 42, 1271–1281.

    PubMed  CAS  Google Scholar 

  • Chow, K. L. Neuronal changes in the visual system following visual deprivation. In R. Jung (Ed.), Handbook of sensory physiology. Vol. VII/3A. New York: Springer-Verlag, 1973, pp. 599–627.

    Google Scholar 

  • Cleland, B. G., Dubin, M. W., and Levick, W. R. Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. Journal of Physiology (London), 1971, 217, 473–496.

    PubMed  CAS  Google Scholar 

  • Cleland, B. G., Levick, W. R., and Sanderson, K. J. Properties of sustained and transient ganglion cells in the cat retina. Journal of Physiology (London), 1973, 228, 649–680,

    PubMed  CAS  Google Scholar 

  • Coleman, P. D., and Riesen, A. H. Environmental effects on cortical dendritic fields. I. Rearing in the dark. Journal of Anatomy, 1968, 102, 363–374.

    PubMed  CAS  Google Scholar 

  • Coleman, P. D., Flood, D. G., Whitehead, M. C., and Emerson, R. C. Spatial sampling by dendritic trees in visual cortex. Brain Research, 1981, 214, 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Colonnier, M. The tangential organization of the visual cortex.Journal of Anatomy, 1964, 98, 327– 344.

    PubMed  CAS  Google Scholar 

  • Cowan, W. M. Neuronal death as a regulative mechanism in the control of cell number in the nervous system. In M. Rockstein (Ed.), Development and aging in the nervous system. New York: Academic Press, 1973, pp. 19–41.

    Google Scholar 

  • Cragg, B. G. The development of synapses in the visual system of the cat. Journal of Comparative Neurology, 1975, 160, 147–166.

    Article  PubMed  CAS  Google Scholar 

  • Creutzfeldt, O. D., and Nothdurft, H. C. Representation of complex visual stimuli in the brain. Natur- wissenschaflen, 1978, 65, 307–318.

    Article  CAS  Google Scholar 

  • Cynader, M., Berman, N., and Hein, A. Recovery of function in cat visual cortex following prolonged deprivation. Experimental Brain Research, 1976, 25, 139–156.

    Article  CAS  Google Scholar 

  • Daniels, J. D., Norman, J. L., and Pettigrew, J. D. Biases for oriented moving bars in lateral geniculate nucleus neurons of normal and stripe-reared cats. Experimental Brain Research, 1977, 29, 155–172.

    Article  CAS  Google Scholar 

  • Daniels, J. D., Pettigrew, J. D., and Norman, J. L. Development of single-neuron responses in kitten’s lateral geniculate nucleus. Journal of Neurophysiology, 1978, 41, 1373–1393.

    PubMed  CAS  Google Scholar 

  • Daw, N. W., Videen, T. O., Robertson, T., and Rader, R. K. An evaluation of the hypothesis that noradrenaline affects plasticity in the developing visual cortex. In A. Fein and J. S. Levine (Eds.), The visual system, New York: Alan R. Liss, 1985, pp. 133–144.

    Google Scholar 

  • Derrington, A. M. Development of spatial frequency selectivity in striate cortex of vision-deprived cats. Experimental Brain Research, 1984, 55, 431–437.

    Article  CAS  Google Scholar 

  • Derrington, A. M., and Fuchs, A. F. Development of spatial frequency selectivity in kitten striate cortex. Journal of Physiology (London), 1981, 316, 1–10.

    PubMed  CAS  Google Scholar 

  • Derrington, A. M., and Hawken, M. J. Spatial and temporal properties of cat geniculate neurones after prolonged deprivation. Journal of Physiology (London), 1981, 314, 107–120.

    PubMed  CAS  Google Scholar 

  • Dodwell, P. C., Timney, B. N., and Emerson, V. F. Development of visual stimulus-seeking in dark- reared kittens. Nature, 1976, 260, 777–778.

    Article  PubMed  CAS  Google Scholar 

  • Donovan, A. The postnatal development of the cat’s retina. Experimental Eye Research, 1966, 5, 249– 254.

    Article  PubMed  CAS  Google Scholar 

  • Dreher, B., Leventhal, A. G., and Hale, P. T. Geniculate input to cat visual cortex: A comparison of area 19 with areas 17 and 18. Journal of Neurophysiology, 1980, 44, 804–826.

    PubMed  CAS  Google Scholar 

  • Emerson, V. F., and Timney, B. Measurement of visual preferences in cats. Perception, 1977, 6, 173–179.

    Article  PubMed  CAS  Google Scholar 

  • Enroth-Cugell, C., and Robson, J. G. The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology (London), 1966, 187, 517–552.

    PubMed  CAS  Google Scholar 

  • Fiorentini, A., and Maffei, L. Selective impairment of contrast sensitivity in kittens exposed to periodic gratings. Journal of Physiology (London), 1978, 277, 455–466.

    PubMed  CAS  Google Scholar 

  • Fox, M. W. Reflex development and behavioral organization. In W. A. Himwich (Ed.), Developmental Neurobiology. Springfield, 111.: Thomas, 1970, pp. 553–580.

    Google Scholar 

  • Frederickson, C. J., and Frederickson, M. H. Emergence of spontaneous alternation in the kitten. Developmental Psychobiology, 1979a, 12, 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Frederickson, C. J., and Frederickson, M. H. Developmental changes in open-field behavior in the kitten. Developmental Psychobiology, 1979b, 12, 623–628.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, D. N., and Marg, E. Visual acuity development coincides with the sensitive period in kittens. Nature, 1975, 254, 614–615.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, N. C. G., and Rosenblatt, J. S. The interrelationship between thermal and olfactory stimulation in the development of home orientation in newborn kittens. Developmental Psychobiology, 1978, 11, 437–457.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, R. D., and Bonds, A. B. Cortical plasticity in monocularly deprived immobilized kittens depends on eye movement. Science, 1979, 206, 1093–1095.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, R. D., and Lai, C. E. Development of the optical surfaces of the kitten eye. Vision Research, 1978, 18, 399–407.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, R. D., Wong, S., and Zezula, S. Optical development of the kitten cornea. Vision Research, 1978, 18, 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Fregnac, Y., and Imbert, M. Early development of visual cortical cells in normal and dark-reared kittens: Relationship between orientation selectivity and ocular dominance. Journal of Physiology (London), 1978, 278, 27–44.

    PubMed  CAS  Google Scholar 

  • Fregnac, Y., and Imbert, M. Development of neuronal selectivity in primary visual cortex of cat. Physiological Reviews, 1984, 64, 325–434.

    PubMed  CAS  Google Scholar 

  • Friedlander, M.J. Structure of physiologically classified neurones in the kitten dorsal lateral geniculate nucleus. Nature 1982, 300, 180–183.

    Article  PubMed  CAS  Google Scholar 

  • Friedlander, M. J., Lin, C. S., Stanford, L. R., and Sherman, S. M. Morphology of functionally identified neurons in lateral geniculate nucleus of the cat.Journal of Neurophysiology, 1981, 46, 80–129.

    PubMed  CAS  Google Scholar 

  • Friedlander, M. J., Martin, K. A. C., and Vahle-Hinz, C. The postnatal development of structure of physiologically identified retinal ganglion cell (r.g.c.) axons in the kitten. Journal of Physiology (London), 1982, 336, 28–29 P.

    Google Scholar 

  • Fries, W., Albus, K., and Creutzfeldt, O. D. Effects of interacting visual patterns on single cell responses in cat’s striate cortex. Vision Research, 1977, 17, 1001–1008.

    Article  PubMed  CAS  Google Scholar 

  • Fukada, Y. Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vision Research, 1971, 11, 209–226.

    Article  PubMed  CAS  Google Scholar 

  • Galef, B. G., Jr. The ecology of weaning: Parasitism and the achievement of independence by altricial mammals. In D.J. Gubernick and P. H. Klopfer (Eds.), Parental care in mammals. New York: Plenum Press, 1981, pp. 211–242.

    Google Scholar 

  • Gilbert, C. D. Laminar differences in receptive field properties of cells in cat primary visual cortex. Journal of Physiology (London), 1977, 268, 391–421.

    PubMed  CAS  Google Scholar 

  • Gilbert, C. D. Microcircuitry of the visual cortex. Annual Review of Neuroscience, 1983, 6, 217–247.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, C. D., and Kelly, J. P. The projections of cells in different layers of the cat’s visual cortex. Journal of Comparative Neurology, 1975, 163, 81–106.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, B., and Presson, J. Orientation deprivation in cat: What produces the abnormal cells? Experimental Brain Research, 1982, 46, 144–146.

    CAS  Google Scholar 

  • Grobstein, P., and Chow, K. L. Receptive field development and individual experience. Science, 1975, 190, 352–358.

    Article  PubMed  CAS  Google Scholar 

  • Gyllensten, L., Malmfors, T., and Norrlin, M. L. Effect of visual deprivation on the optic centers of growing and adult mice. Journal of Comparative Neurology, 1965, 124, 149–160.

    Article  PubMed  CAS  Google Scholar 

  • Gyllensten, L., Malmfors, T., and Norrlin-Grettve, M. L. Developmental and functional alterations in the fiber composition of the optic nerve in visually deprived mice.Journal of Comparative Neurology, 1966, 128, 413–418.

    Article  Google Scholar 

  • Hagerty, C. M., Lees, F. C., Tieman, S. B., and Hirsch, H. V. B. Principal components analysis of cells in cat visual cortex. Brain Research, 1982, 251, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Hamasaki, D. I., and Flynn, J. T. Physiological properties of retinal ganglion cells of 3-week-old kittens. Vision Research, 1977, 17, 275–284.

    Article  PubMed  CAS  Google Scholar 

  • Hamasaki, D. I., and Sutija, V. G. Development of X- and Y-cells in kittens. Experimental Brain Research, 1979, 35, 9–23.

    CAS  Google Scholar 

  • Hammond, P. Cat retinal ganglion cells: Size and shape of receptive field centres. Journal of Physiology (London), 1974, 242, 99–118.

    PubMed  CAS  Google Scholar 

  • Hebb, D. O. The Organization of behaviour. New York: Wiley, 1949.

    Google Scholar 

  • Hein, A., and Held, R. Dissociation of the visual placing response into elicited and guided components. Science 1967, 158, 390–392.

    Article  PubMed  CAS  Google Scholar 

  • Hein, A., Vital-Durand, F. Salinger, W., and Diamond, R. Eye movements initiate visual-motor development in the cat. Science, 1979, 204, 1321–1322.

    Google Scholar 

  • Held, R., and Bossom, J. Neonatal deprivation and adult rearrangement: Complementary techniques for analyzing plastic sensory-motor coordinations. Journal of Comparative and Physiological Psychology, 1961, 54, 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Held, R., and Hein, A. Movement-produced stimulation in the development of visually guided behavior. Journal of Comparative and Physiological Psychology, 1963, 56, 872–876.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, A., and Boothe, R. Morphology of the retina and dorsal lateral geniculate nucleus in dark- reared monkeys (Macaca nemestrina). Vision Research, 1976, 16, 517–521.

    Article  PubMed  CAS  Google Scholar 

  • Henry, G. H., Dreher, B., and Bishop, P. O. Orientation specificity of cells in cat striate cortex. Journal of Neurophysiology, 1974, 57, 1394–1409.

    Google Scholar 

  • Henry, G. H., Harvey, A. R., and Lund, J. S. The afferent connections and laminar distribution of cells in the cat striate cortex. Journal of Comparative Neurology, 1979, 187, 725–744.

    Article  PubMed  CAS  Google Scholar 

  • Henry, G. H., Mustari, M. J., and Bullier, J. Different geniculate inputs to B and C cells of cat striate cortex. Experimental Brain Research, 1983, 52, 179–189.

    Google Scholar 

  • Hess, R., Negishi, K., and Creutzfeldt, O. The horizontal spread of intracortical inhibition in the visual cortex. Experimental Brain Research, 1975, 22, 415–419.

    Article  Google Scholar 

  • Hickey, T. L. Development of the dorsal lateral geniculate nucleus in normal and visually deprived cats. Journal of Comparative Neurology, 1980, 189, 467–481.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, H. V. B. Visual perception in cats after environmental surgery. Experimental Brain Research, 1972, 15, 405–423.

    Article  CAS  Google Scholar 

  • Hirsch, H. V. B. The role of visual experience in the development of cat striate cortex. Cellular and Molecular Neurobiology, 1985, 5, 103–121.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, H. V. B., and Jacobson, M. The perfectible brain: Principles of neuronal development. In M. Gazzaniga and C. Blakemore (Eds.), Handbook of psychobiology. New York: Academic Press, 1975, pp. 107–137.

    Google Scholar 

  • Hirsch, H. V. B., and Leventhal, A. G. Cortical effects of early visual experience. In S. J. Cool and E. L. Smith, III (Eds.), Frontiers in visual science. New York: Springer-Verlag, 1978a, pp. 660–673.

    Google Scholar 

  • Hirsch, H. V. B., and Leventhal, A. G. Functional modification of the developing visual system. In Marcus Jacobson (Ed.), Handbook of sensory physiology. Vol. IX. Development of sensory systems, New York: Springer-Verlag, 1978b, pp. 279–335.

    Google Scholar 

  • Hirsch, H. V. B., and Spinelli, D. N. Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science, 1970, 168, 869–871.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, H. V. B., and Spinelli, D. N. Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Experimental Brain Research, 1971, 12, 509–527.

    Article  CAS  Google Scholar 

  • Hirsch, H. V. B., Leventhal, A. G., McCall, M. A., and Tieman, D. G. Effects of exposure to lines of one or two orientations on different cell types in striate cortex of cat. Journal of Physiology (London), 1983, 337, 241–255.

    PubMed  CAS  Google Scholar 

  • Hoffmann, K.-P., and Stone, J. Conduction velocity of afferents to cat visual cortex: A correlation with cortical receptive field properties. Brain Research, 1971, 32, 460–466.

    Article  Google Scholar 

  • Hoffmann, K.-P., Stone, J., and Sherman, S. M. Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. Journal of Neurophysiology, 1972, 35, 518–531.

    PubMed  CAS  Google Scholar 

  • Hollyday, M., and Hamburger, V. Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. Journal of Comparative Neurology, 1976, 170, 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. Receptive fields of single neurones in the cat’s striate cortex.Journal of Physiology (London), 1959, 148, 574–591.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology (London), 1962, 160, 106–154.

    CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. Shape and arrangement of columns in cat’s striate cortex. Journal of Physiology (London), 1963a, 165, 559–568.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. Journal of Neurophysiology, 1963b, 26, 994–1002.

    PubMed  CAS  Google Scholar 

  • Huttenfocher, P. R. Development of cortical neuronal activity in the neonatal cat. Experimental Neurology, 1967, 17, 247–262.

    Article  Google Scholar 

  • Ikeda, H., and Tremain, K. E. The development of spatial resolving power of lateral geniculate neurones in kittens. Experimental Brain Research, 1978, 31, 193–206.

    CAS  Google Scholar 

  • Ikeda, H., and Wright, M. J. Receptive field organization of “sustained” and “transient” retinal ganglion cells which subserve different functional roles.Journal of Physiology (London), 1972, 227, 769– 800.

    Google Scholar 

  • Imbert, M., and Buisseret, P. Receptive field characteristics and plastic properties of visual cortical cells in kittens reared with or without visual experience. Experimental Brain Research, 1975, 22, 25–36.

    Article  CAS  Google Scholar 

  • Imbert, M., and Fregnac, Y. Specification of cortical neurons by visuomotor experience. In J. P. Chan- geux, J. Glowinski, M. Imbert, and F. E. Bloom (Eds.), Molecular and cellular interactions underlying higher brain functions. New York: Elsevier Science Publishers, 1983, pp. 427–436.

    Google Scholar 

  • Jacobson, M. Developmental neurobiology. New York: Holt, Rinehart and Winston, 1970.

    Google Scholar 

  • Jacobson, M. Genesis of neuronal specificity. In M. Rockstein (Ed.), Development and aging in the nervous system. New York: Academic Press, 1973, pp. 105–119.

    Google Scholar 

  • Jacobson, M. Developmental neurobiology, 2nd ed. New York: Plenum Press, 1978.

    Google Scholar 

  • Johns, P. R., Rusoff, A. C., and Dubin, M. W. Postnatal neurogenesis in the kitten retina. Journal of Comparative Neurology, 1979, 187, 545–556.

    Article  PubMed  CAS  Google Scholar 

  • Kalil, R. E. Dark rearing in the cat: Effects on visuomotor behavior and cell growth in the dorsal lateral geniculate nucleus. Journal of Comparative Neurology, 1978a, 178, 451–468.

    Article  PubMed  CAS  Google Scholar 

  • Kalil, R. E. Development of the dorsal lateral geniculate nucleus in the cat. Journal of Comparative Neurology, 1978b, 182, 265–292.

    Article  PubMed  CAS  Google Scholar 

  • Kalil, R. E., Dubin, M. W., Scott, G. L., and Stark, L. A. Effects of retinal ganglion cell blockade on the morphological development of retinogeniculate synapses in the cat. Society for Neuroscience Abstracts, 1983, 11 4.

    Google Scholar 

  • Karmel, B. Z., Miller, P. N., Dettweiler, L., and Anderson, G. Texture density and normal development of visual depth avoidance. Developmental Psychobiology, 1970, 3, 73–90.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., and Pettigrew, J. D. Depletion of brain catecholamines: Failure of ocular dominance shift after monocular occlusion in kittens. Science, 1976, 194, 206–209.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., and Pettigrew, J. D. Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine.Journal of Comparative Neurology, 1979, 185, 139–162.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Pettigrew, J. D., and Ary, M. Restoration of visual cortical plasticity by local microper- fusion of norepinephrine. Journal of Comparative Neurology, 1979, 185, 163–182.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Pettigrew, J. D., and Ary, M. Cortical recovery from effects of monocular deprivation: Acceleration with norepinephrine and suppression with 6-hydroxydopamine. Journal of Neurophysiology, 1981, 45, 254–266.

    PubMed  CAS  Google Scholar 

  • Kato, N., Kawaguchi, S., Yamamoto, T., Samejima, A., and Miyata, H. Postnatal development of the geniculocortical projection in the cat: Electrophysiological and morphological studies. Experimental Brain Research, 1983, 51, 65–72.

    Article  CAS  Google Scholar 

  • Kety, S. S. The biogenic amines in the central nervous system: Their possible roles in arousal, emotion and learning. In F. O. Schmitt (Ed.), The neurosciences: second study program. New York: Rockefeller University Press, 1970, pp. 324–336.

    Google Scholar 

  • Kirk, M. D., Waldrop, B., and Glantz, R. M. A quantitative correlation of contour sensitivity with dendritic density in an identified visual neuron. Brain Research, 1983, 274, 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, B., and Nonneman, A. J. The development of social responsiveness in kittens. Animal Behaviour, 1975, 23, 368–374.

    Article  Google Scholar 

  • Kratz, K. E. Spatial and temporal sensitivity of lateral geniculate cells in dark-reared cats. Brain Research, 1982, 251, 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Kratz, K. E., Sherman, S. M., and Kalil, R. Lateral geniculate nucleus in dark-reared cats: Loss of Y cells without changes in cell size. Science, 1979, 203, 1353–1355.

    Article  PubMed  CAS  Google Scholar 

  • Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 1953, 16, 37–68.

    PubMed  CAS  Google Scholar 

  • Laemle, L., Benhamida, C., and Purpura, D. P. Laminar distribution of geniculo-cortical afferents in visual cortex of the postnatal kitten. Brain Research, 1972, 41, 25–37.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B. B., Creutzfeldt, O. D., and Elepfandt, A. The responses of magno- and parvocellular cells of the monkey’s lateral geniculate body to moving stimuli. Experimental Brain Research, 1979, 35, 547– 557.

    Article  CAS  Google Scholar 

  • LeVay, S., Stryker, M. P., and Shatz, C. J. Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study. Journal of Comparative Neurology, 1978, 179, 223– 244.

    Article  PubMed  CAS  Google Scholar 

  • Leventhal, A. G. Evidence that the different classes of relay cells of the cat’s lateral geniculate nucleus terminate in different layers of the striate cortex. Experimental Brain Research, 1979, 37, 349–372.

    Article  CAS  Google Scholar 

  • Leventhal, A. G. Relationship between preferred orientation and receptive field position of neurons in cat striate cortex. Journal of Comparative Neurology, 1983, 220, 476–483.

    Article  PubMed  CAS  Google Scholar 

  • Leventhal, A. G., and Hirsch, H. V. B. Cortical effect of early selective exposure to diagonal lines. Science, 1975, 190, 902–904.

    Article  PubMed  CAS  Google Scholar 

  • Leventhal, A. G., and Hirsch, H. V. B. Effects of early experience upon orientation sensitivity and binoc- ularity of neurons in visual cortex of cats. Proceedings of the National Academy of Science USA, 1977, 74, 1272–1276.

    Article  CAS  Google Scholar 

  • Leventhal, A. G., and Hirsch, H. V. B. Receptive-field properties of neurons in different laminae of visual cortex of the cat. Journal of Neurophysiology, 1978, 41, 948–962.

    PubMed  CAS  Google Scholar 

  • Leventhal, A. G., and Hirsch, H. V. B. Receptive-field properties of different classes of neurons in visual cortex of normal and dark-reared cats. Journal of Neurophysiology, 1980, 43, 111 1–1132.

    Google Scholar 

  • Leventhal, A. G., and Schall, J. D. Structural basis of orientation sensitivity of cat retinal ganglion cells. Journal of Comparative Neurology, 1983, 220, 465–475.

    Article  PubMed  CAS  Google Scholar 

  • Levick, W. R., and Thibos, L. N. Orientation bias of cat retinal ganglion cells. Nature, 1980, 286, 389– 390.

    Article  PubMed  CAS  Google Scholar 

  • Levick, W. R., and Thibos, L. N. Analysis of orientation bias in cat retina. Journal of Physiology (London). 1982, 329, 243–261.

    PubMed  CAS  Google Scholar 

  • Levine, M. S., Hull, C. D., and Buchwald, N. A. Development of motor activity in kittens. Developmental Psychobiology, 1980, 13, 357–371.

    Article  PubMed  CAS  Google Scholar 

  • Lund, R. D. Development and plasticity of the brain. New York: Oxford University Press, 1978.

    Google Scholar 

  • Mariani, A. P. A morphological basis for verticality detectors in the pigeon retina: Asymmetric amacrine cells. Naturwissenschaften, 1983, 70, 368–369.

    Article  Google Scholar 

  • Martin, P. H. Weaning and behavioural development in the cat. Ph.D. Thesis, Christ’s College, Cambridge, England, 1982.

    Google Scholar 

  • Mason, C. A. Development of terminal arbors of retino-geniculate axons in the kitten. I. Light microscopical observations. Neuroscience, 1982a, 7, 541–559.

    Article  PubMed  CAS  Google Scholar 

  • Mason, C. A. Development of terminal arbors of retino-geniculate axons in the kitten. II. Electron microscopical observations. Neuroscience, 1982b, 7, 561–582.

    Article  PubMed  CAS  Google Scholar 

  • Mason, C. A. Postnatal maturation of neurons in the cat’s lateral geniculate nucleus. Journal of Comparalive Neurology, 1983, 217, 458–469.

    Article  CAS  Google Scholar 

  • Mason, R. Cell properties in the medial interlaminar nucleus of the cat’s lateral geniculate complex in relation to the transient/sustained classification. Experimental Brain Research, 1975, 22, 327–329.

    Article  CAS  Google Scholar 

  • Mastronarde, D. N. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. Journal of Neurophysiology, 1983a, 49, 303–324.

    PubMed  CAS  Google Scholar 

  • Mastronarde, D. N. Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. Journal of Neurophysiology, 1983b, 49, 325–349.

    PubMed  CAS  Google Scholar 

  • Mastronarde, D. N. Interactions between ganglion cells in cat retina. Journal of Neurophysiology, 1983c, 49, 350–365.

    PubMed  CAS  Google Scholar 

  • Mates, S. L., and Lund, J. S. Neuronal composition and development in lamina 4C of monkey striate cortex. Journal of Comparative Neurology, 1983a, 221, 60–90.

    Article  PubMed  CAS  Google Scholar 

  • Mates, S. L., and Lund, J. S. Spine formation and maturation of type 1 synapses on spiny stellate neurons in primate visual cortex. Journal of Comparative Neurology, 1983b, 221, 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Mates, S. L., and Lund, J. S. Developmental changes in the relationship between type 2 synapses and spiny neurons in the monkey visual cort ex. Journal of Comparative Neurology, 1983c, 221, 98–105.

    Article  PubMed  CAS  Google Scholar 

  • Matin, E. Saccadic suppression and the dual mechanism theory of direction constancy. Vision Research, 1982, 22, 335–336.

    Article  PubMed  CAS  Google Scholar 

  • McCall, M. A. The relationship between ocular dominance and other response properties of cortical cells in normal kittens and in monocularly deprived kittens. Ph.D. Thesis, SUNY Albany, 1983.

    Google Scholar 

  • Meyer, R. L. Tetrodotoxin blocks the formation of ocular dominance columns in goldfish. Science, 1982, 218, 589–591.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, R. L. sTetrodotoxin inhibits the formation of refined retinotopography in goldfish. Developmental Brain Research, 1983, 6, 293–298.

    Article  Google Scholar 

  • Mitchell, D. E., Giffin, F., Wilkinson, F., Anderson, P., and Smith, M. L. Visual resolution in young kittens. Vision Research, 1976, 16, 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Moelk, M. The development of friendly approach behavior in the cat: A study of kitten-mother relations and the cognitive development of the kitten from birth to eight weeks. Advances in the Study of Behaviour, 1979, 10, 163–224.

    Article  Google Scholar 

  • Moore, C. L., Kalil, R., and Richards, W. Development of myelination in optic tract of the cat. Journal of Comparative Neurology, 1976, 165, 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Morrone, M. C., Burr, D. C., and Maffei, L. Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proceedings of the Royal Society of London B, 1982, 216, 335–354.

    Article  CAS  Google Scholar 

  • Movshon, J. A., and Van Sluyters, R. C. Visual neural development. Annual Review of Psychology, 1981, 32, 477–522.

    Article  PubMed  CAS  Google Scholar 

  • Mower, G. D., Burchfiel, J. L., and Duffy, F. H. The effects of dark-rearing on the development and plasticity of the lateral geniculate nucleus. Developmental Brain Research, 1981a, 1, 418–424.

    Article  Google Scholar 

  • Mower, G. D., Berry, D., Burchfiel, J. L., and Duffy, F. H. Comparison of the effects of dark rearing and binocular suture on development and plasticity of cat visual cortex. Brain Research, 1981b, 220, 255–267.

    Article  PubMed  CAS  Google Scholar 

  • Muir, D. W., and Mitchell, D. E. Visual resolution and experience: Acuity deficits in cats following early selective visual deprivation. Science, 1973, 180, 420–422.

    Article  PubMed  CAS  Google Scholar 

  • Muir, D. W., and Mitchell, D. E. Behavioral deficits in cats following early selected visual exposure to contours of a single orientation. Brain Research, 1975, 85, 459–477.

    Article  PubMed  CAS  Google Scholar 

  • Murphey, R. K., and Hirsch, H. V. B. From cat to cricket: The genesis of response selectivity on inter- neurons. In R. K. Hunt (Ed.), Current topics in developmental biology. (Vol. 17 ). New York: Academic Press, 1982, pp. 241–256.

    Google Scholar 

  • Mustari, M. J., Bullier, J., and Henry, G. H. Comparison of response properties of three types of monosynaptic S-cell in cat striate cort ex. Journal of Neurophysiology, 1982, 47, 439–454.

    PubMed  CAS  Google Scholar 

  • Nelson, J. I., and Frost, B. J. Orientation-selective inhibition from beyond the classic visual receptive field. Brain Research, 1978, 139, 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Ng, A. Y. K., and Stone, J. The optic nerve of the cat: Appearance and loss of axons during normal development. Developmental Brain Research, 1982, 5, 263–271.

    Article  Google Scholar 

  • Norman, J. L., Pettigrew, J. D., and Daniels, J. D. Early development of X-cells in kitten lateral geniculate nucleus. Science, 1977, 198, 202–204.

    Article  PubMed  CAS  Google Scholar 

  • Norton, T. T. Receptive-field properties of superior colliculus cells and development of visual behavior in kittens. Journal of Neurophysiology, 1974, 37, 674–690.

    PubMed  CAS  Google Scholar 

  • Olson, C. R., and Freeman, R. D. Eye alignment in kittens. Journal of Neurophysiology, 1978, 41, 848–859

    PubMed  CAS  Google Scholar 

  • Olson, C. R., and Freeman, R. D. Rescaling of the retinal map of visual space during growth of the kitten’s eye. Brain Research, 1980, 186, 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, R. W. Ontogenetic adaptations and retrogressive processes in the development of the nervous system and behaviour: A neuroembryological perspective. In K. J. Connolly and H. F. R. Prechtl (Eds.), Maturation and development: Biological and psychological perspectives. Philadelphia: Lip- pincott, 1981, pp. 73–109.

    Google Scholar 

  • Paradiso, M. A., Bear, M. F., and Daniels, J. D. Effects of intracortical infusion of 6-hydroxydopamine on the response of kitten visual cortex to monocular deprivation. Experimental Brain Research, 1983, 51, 413–422.

    Article  CAS  Google Scholar 

  • Passouant, P. Ontogenesis and phylogenesis of sleep. In P. Passouant (Ed.), Handbook of EEG and clinical neurology. Vol. 7A: EEG and sleep. Amsterdam: Elsevier, 1975, pp. 23–24.

    Google Scholar 

  • Peichl, L., and Wassle, H. The structural correlate of receptive field centre of a ganglion cells in the cat retina. Journal of Physiology (London), 1983, 341, 309–324.

    PubMed  CAS  Google Scholar 

  • Pettigrew, J. D. The effect of visual experience on the development of stimulus specificity by kitten cortical neurones. Journal of Physiology (London), 1974, 237, 49–74.

    PubMed  CAS  Google Scholar 

  • Pettigrew, J. D. The paradox of the critical period for striate cortex. In C. W. Cotman (Ed.), Neuronal plasticity. New York: Raven Press, 1978, pp. 311–330.

    Google Scholar 

  • Pettigrew, J. D., and Freeman, R. D. Visual experience without lines: Effect on developing cortical neurons. Science, 1973, 182, 599–601.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew, J. D., Olson, C., and Hirsch, H. V. B. Cortical effect of selective visual experience: degeneration or reorganization? Brain Research, 1973, 51, 345–351.

    Article  PubMed  CAS  Google Scholar 

  • Prestige, M. C. Axon and cell numbers in the developing nervous system. Brain Medical Bulletin, 1974, 30, 107–111.

    CAS  Google Scholar 

  • Rapaport, D. H., and Stone, J. The site of commencement of maturation in mammalian retina: Observations in the cat. Developmental Brain Research, 1982, 5, 273–279.

    Article  Google Scholar 

  • Rasch, E., Swift, H., Riesen, A. H., and Chow, K. L. Altered structure and composition of retinal cells in dark-reared mammals. Experimental Cell Research, 1961, 25, 348–363.

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., and Singer, W. The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses. Journal of Physiology (London), 1981, 310, 215–239.

    PubMed  CAS  Google Scholar 

  • Rodieck, R. W. The vertebrate retina. San Francisco: W. H. Freeman, 1973.

    Google Scholar 

  • Rodieck, R. W. Visual pathways. Annual Review of Neuroscience, 1979, 2, 193–225.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt, J. S., and Schneirla, T. C. The behaviour of cats. In E. S. E. Hafez (Ed.), The behaviour of domestic animals. London: Bailliere, Tindall and Cox, 1962, pp. 453–488.

    Google Scholar 

  • Rosenblatt, J. S., Turkewitz, G., and Schneirla, T. C. Development of home orientation in newly born kittens. Transactions of New York Academy of Sciences, 1964, 31, 231–250.

    Google Scholar 

  • Roux, W. Der Kampf der Theile im Organismus, Leipzig: Wilhelm Engelmann Verlag, 1881.

    Google Scholar 

  • Rusoff, A. C., and Dubiri, M. W. Development of receptive-field properties of retinal ganglion cells in kittens. Journal of Neurophysiology, 1977, 40, 1188–1198.

    PubMed  CAS  Google Scholar 

  • Rusoff, A. C., and Dubin, M. W. Kitten ganglion cells: Dendritic field size at 3 weeks of age and correlation with receptive field size. Investigative Ophthalmology and Visual Science, 1978, 17, 819–821.

    PubMed  CAS  Google Scholar 

  • Saito, H. Morphology of physiologically identified X-, Y-, and W-type retinal ganglion cells of the cat. Journal of Comparative Neurology, 1983, 221, 279–288.

    Article  PubMed  CAS  Google Scholar 

  • Sato, H., and Tsumoto, T. GABAergic inhibition already operates on a group of neurons in the kitten visual cortex at the time of eye opening. Developmental Brain Research, 1984, 12, 311–315.

    Article  CAS  Google Scholar 

  • Saunders, J. W., Jr. Cell death in embryonic systems. Science, 1966, 154, 604–612.

    Article  PubMed  Google Scholar 

  • Schmidt, J. T., and Edwards, D. L. Activity sharpens the map during the regeneration of the retinotectal projection in goldfish. Brain Research, 1983, 269, 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J. T., Edwards, D. L., and Stuermer, C. The re-establishment of synaptic transmission by regenerating optic axons in goldfish: Time course and effects of blocking activity by intraocular injection of tetrodotoxin. Brain Research, 1983, 269, 15–27.

    Article  PubMed  CAS  Google Scholar 

  • Shatz, C. J. The prenatal development of the cat’s retinogeniculate pathway. Journal of Neuroscience, 1983, 3, 482–499.

    PubMed  CAS  Google Scholar 

  • Shatz, C. J., and Kirkwood, P. A. Prenatal development of functional connections in the cat’s retino geniculate pathway. Journal of Neuroscience, 1984, 4, 1378–1397.

    PubMed  CAS  Google Scholar 

  • Sherk, H., and Stryker, M. P. Quantitative study of cortical orientation selectivity in visually inexperienced kitten. Journal of Neurophysiology, 1976, 39, 63–70.

    PubMed  CAS  Google Scholar 

  • Sherman, S. M. Development of interocular alignment in cats. Brain Research, 1972, 37, 187–203.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, S. M., and Spear, P. D. Organization of visual pathways in normal and visually deprived cats. Physiological Reviews, 1982, 62, 738–855.

    PubMed  CAS  Google Scholar 

  • Sillito, A. M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. Journal of Physiology (London), 1975, 250, 305–329.

    PubMed  CAS  Google Scholar 

  • Sillito, A. M. Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. Journal of Physiology (London), 1979, 289, 33–53.

    PubMed  CAS  Google Scholar 

  • Sillito, A. M., Kemp, J. A., Milson, J. A., and Berardi, N. A re-evaluation of the mechanisms underlying simple cell orientation selectivity. Brain Research, 1980, 194, 517–520.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W. Central core control of developmental plasticity in the kitten visual cortex: I. Diencephalic lesions. Experimental Brain Research, 1982, 47, 209–222.

    Google Scholar 

  • Singer, W., and Rauschecker, J. P. Central core control of developmental plasticity in the kitten visual cortex: II. Electrical activation of mesencephalic and diencephalic projections. Experimental Brain Research, 1982, 47, 223–233.

    CAS  Google Scholar 

  • Singer, W., and Tretter, F. Receptive-field properties and neuronal connectivity in striate and parastri- ate cortex of contour-deprived cats. Journal of Neurophysiology, 1976, 39, 613–630.

    PubMed  CAS  Google Scholar 

  • Singer, W., Freeman, B., and Rauschecker, J. Restriction of visual experience to a single orientation affects the organization of orientation columns in cat visual cortex. Experimental Brain Research, 1981, 41, 199–215.

    Article  CAS  Google Scholar 

  • Singer, W., Tretter, F., and Cynader, M. Organization of cat striate cortex: A correlation of receptive- field properties with afferent and efferent connections. Journal of Neurophysiology, 1975, 38, 1080– 1098.

    Google Scholar 

  • Spinelli, D. N., Hirsch, H. V. B., Phelps, R. W., and Metzler, J. Visual experience as a determinant of the response characteristics of cortical receptive fields in cats. Experimental Brain Research 1972, 15, 289–304.

    Article  CAS  Google Scholar 

  • Stanford, L. R., and Sherman, S. M. Structure/function relationships of retinal ganglion cells in the cat. Brain Research 1984, 297, 381–386.

    Article  PubMed  CAS  Google Scholar 

  • Stanford, L. R., Friedlander, M. J., and Sherman, S. M. Morphological and physiological properties of geniculate W-cells of the cat: A comparison with X- and Y-cells. Journal of Neurophysiology, 1983, 50, 582–608.

    PubMed  CAS  Google Scholar 

  • Stark, L., Michael, J. A., and Zuber, B. L. Saccadic suppression: A product of the saccadic anticipatory signal. In C. R. Evans and T. B. Mulholland (Eds.), Attention in neurophysiology. London: Butter- worths, 1969, pp. 281–303.

    Google Scholar 

  • Stone, J. Parallel processing in the visual system. New York: Plenum Press, 1983.

    Google Scholar 

  • Stone, J., and Fukuda, Y. Properties of cat retinal ganglion cells: A comparison of W-cells with X- and Y-cells. Journal of Neurophysiology, 1974, 37, 722–748.

    PubMed  CAS  Google Scholar 

  • Stone, J., and Hoffmann, K.-P. Very slow-conducting ganglion cells in the cat’s retina: a major, new functional type? Brain Research, 1972, 43, 610–616.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J., Dreher, B., and Leventhal, A. Hierarchical and parallel mechanisms in the organization of visual cortex. Brain Research Reviews, 1979, 1, 345–394.

    Article  Google Scholar 

  • Stone, J., Rapaport, D. H., Williams, R. W., and Chalupa, L. Uniformity of cell distribution in the ganglion cell layer of prenatal cat retina: Implications for mechanisms of retinal development. Developmental Brain Research, 1982, 2, 231–242.

    Article  Google Scholar 

  • Stryker, M. P., Sherk, H., Leventhal, A. G., and Hirsch, H. V. B. Physiological consequences for the cat’s visual cortex of effectively restricting early visual experience with oriented contours. Journal of Neurophysiology, 1978, 41, 896–909.

    PubMed  CAS  Google Scholar 

  • Swadlow, H. A. Efferent systems of primary visual cortex: A review of structure and function. Brain Research Reviews, 1983, 6, 1–24.

    Article  Google Scholar 

  • Tees, R. C. Effect of early restriction on later form discrimination in the rat. Canadian Journal of Psychology, 1968, 22, 294–298.

    Article  PubMed  CAS  Google Scholar 

  • Tees, R. C. The effect of visual deprivation on pattern recognition in the rat. Developmental Psychobiology, 1979, 12, 485–497.

    Article  PubMed  CAS  Google Scholar 

  • Tees, R. C., Midgley, G., and Bruinsma, Y. Effect of controlled rearing on the development of stimulus-seeking behavior in rats.Journal of Comparative and Physiological Psychology, 1980, 94, 1003–1018.

    Article  PubMed  CAS  Google Scholar 

  • Thibos, L. N., and Levick, W. R. Astigmatic visual deprivation in cat: Behavioral, optical and retino physiological consequences. Vision Research, 1982, 22, 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Thorn, F., Gollender, M., and Erickson, P. The development of the kitten’s visual optics. Vision Research, 1976, 16, 1145–1149.

    Article  PubMed  CAS  Google Scholar 

  • Tieman, S. B., and Hirsch, H. V. B. Exposure to lines of only one orientation modifies dendritic morphology of cells in the visual cortex of the cat. Journal of Comparative Neurology, 1982, 211, 353– 362.

    Article  PubMed  CAS  Google Scholar 

  • Tieman, S. B., and Hirsch, H. V. B. Role of dendritic fields in orientation selectivity. In D. Rose and V. G. Dobson (Eds.), Models of the visual cortex. New York: Wiley, 1985, pp. 432–442.

    Google Scholar 

  • Timney, B. N., Emerson, V. F., and Dodwell, P. C. Development of visual stimulus-seeking in kittens. Quarterly Journal of Experimental Psychology, 1979, 31, 63–81.

    Article  PubMed  CAS  Google Scholar 

  • Toyama, K., Matsunami, K., Ohno, T., and Tokashiki, S. An intracellular study of neuronal organization in the visual cortex. Experimental Brain Research, 1974, 21, 45–66.

    Article  CAS  Google Scholar 

  • Trotter, Y., Gary-Bobo, E., and Buisseret, P. Recovery of orientation selectivity in kitten primary visual cortex is slowed down by bilateral section of ophthalmic trigeminal afferents. Developmental Brain Research, 1981, 1, 450–454.

    Article  Google Scholar 

  • Tsumoto, T. Inhibitory and excitatory binocular convergence to visual cortical neurons of the cat. Brain Research, 1978, 159, 85–97.

    Article  PubMed  CAS  Google Scholar 

  • Tsumoto, T., and Suda, K. Laminar differences in development of afferent innervation to striate cortex neurones in kittens. Experimental Brain Research, 1982, 45, 433–446.

    Article  CAS  Google Scholar 

  • Tucker, G. S. Light microscopic analysis of the kitten retina: postnatal development in the area centralis. Journal of Comparative Neurology, 1978, 180, 489–500.

    Article  PubMed  CAS  Google Scholar 

  • Valverde, F. Apical dendritic spines of the visual cortex and light deprivation in the mouse. Experimental Brain Research, 1967, 3, 337–352.

    Article  CAS  Google Scholar 

  • Van Hof-Van Duin, J. Development of visuomotor behavior in normal and dark-reared cats. Brain Research, 1976, 104, 233–241.

    Article  Google Scholar 

  • Van Hof-Van Duin, J. Direction preference of optokinetic responses in monocularly tested normal kittens and light deprived cats. Archives of Italian Biology, 1978, 116, 471–477.

    Google Scholar 

  • Van Sluyters, R. C., and Blakemore, C. Experimental creation of unusual neuronal properties in visual cortex of kitten. Nature, 1973, 246, 506–508.

    Article  PubMed  Google Scholar 

  • Vidyasagar, T. R., and Urbas, J. V. Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Experimental Brain Research, 1982, 46, 157–169.

    Article  CAS  Google Scholar 

  • Villablanca, J. R., and Olmstead, C. E. Neurological development of kittens. Developmental Psychobiology, 1979, 12, 101–127.

    Article  PubMed  CAS  Google Scholar 

  • Vital-Durand, F., and Jeannerod, M. Maturation of the optokinetic response: genetic and environmental factors. Brain Research, 1974, 71, 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, M. Postnatal development of the cat’s retina. Advanced anatomical and Embryological Cell Biology, 1978, 54, 1–66.

    CAS  Google Scholar 

  • Walk, R. D. The influence of level of illumination and size of pattern on the depth perception of the kitten and the puppy. Psychonomic Science, 1968, 12, 199–200.

    Google Scholar 

  • Wark, R. C., and Peck, C. K. Behavioral consequences of early visual exposure to contours of a single orientation. Developmental Brain Research, 1982, 5, 218–221.

    Article  Google Scholar 

  • Warkentin, J., and Smith, K. U. The development of visual acuity in the cat. Journal of Genetic Psychology, 1937, 50, 371–399.

    Google Scholar 

  • Watkins, D. W., Wilson, J. R., and Sherman, S. M. Receptive-field properties of neurons in binocular and monocular segments of striate cortex in cats raised with binocular lid suture. Journal of Neurophysiology, 1978, 41, 322–337.

    PubMed  CAS  Google Scholar 

  • Weiskrantz, L. Sensory deprivation and the cat’s optic nervous system. Nature, 1958, 181, 1047–1050.

    Article  PubMed  CAS  Google Scholar 

  • West, M. J. Social play in the domestic cat. American Zoologist, 1974, 14, 427–436.

    Google Scholar 

  • West, M.J. Exploration and play with objects in domestic kittens. Developmental Psychobiology, 1977, 10, 53–57.

    Article  PubMed  CAS  Google Scholar 

  • West, M. J. Play in domestic kittens. In R. B. Cairns (Ed.), The Analysis of Social Interactions. Hillsdale, N. J.: Lawrence Erlbaum, 1979, pp. 179–193.

    Google Scholar 

  • Wiesel, T. N., and Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 1963, 26, 1003–1017.

    PubMed  CAS  Google Scholar 

  • Wiesel, T. N., and Hubel, D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology, 1965, 28, 1029–1040.

    PubMed  CAS  Google Scholar 

  • Wilkinson, F., and Dodwell, P. C. Young kittens can learn complex visual pattern discriminations. Nature, 1980, 284, 258–259.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, P. D., and Stone, J. Evidence of W-cell input to the cat’s visual cortex via the C laminae of the lateral geniculate nucleus. Brain Research, 1975, 92, 472–478.

    Article  PubMed  CAS  Google Scholar 

  • Winfield, D. A. The postnatal development of synapses in the visual cortex of the cat and the effects of eyelid closure. Brain Research, 1981, 206, 166–171.

    Article  PubMed  CAS  Google Scholar 

  • Winfield, D. A., and Powell, T. P. S. An electron-microscopical study of the postnatal development of the lateral geniculate nucleus in the normal kitten and after eyelid suture. Proceedings of the Royal Society of London, Ser. B., 1980, 210, 197–210.

    Article  CAS  Google Scholar 

  • Winfield, D. A., Hiorns, R. W., and Powell, T. P. S. A quantitative electron-microscopical study of the postnatal development of the lateral geniculate nucleus in normal kittens and in kittens with eyelid suture. Proceedings of the Royal Society of London, 1980, 210, 211–234.

    Article  PubMed  CAS  Google Scholar 

  • Young, J. Z. The visual system of octopus. Nature (London), 1960, 186, 836–844.

    Article  PubMed  CAS  Google Scholar 

  • Zetterstrom, B. The effect of light on the appearance and development of the electroretinogram in newborn kittens. Acta Physiologica Scandinavica, 1956, 35, 272–279.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Hirsch, H.V.B. (1986). The Tunable Seer. In: Blass, E.M. (eds) Developmental Psychobiology and Developmental Neurobiology. Handbook of Behavioral Neurobiology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2113-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2113-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9250-0

  • Online ISBN: 978-1-4613-2113-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics