Dietary Fiber pp 101-118 | Cite as

The Ecology of the Colon

  • Kathleen Fadden


The gastrointestinal tract and its contents constitute a dynamic ecosystem, the existence and relative stability of which is very important to the well-being of the host. By definition, ecology of the gut implies the inter- and intraspecific relations among host, microflora, and their environment, with special reference to species distribution and abundance. Interactions within the gastrointestinal tract are numerous and intricate; however, the major interacting components may be considered as: (1) those relating to host physiology, i.e., absorptive and secretory mechanisms and intestinal motility; (2) nutrient supply; and (3) flora.


Bile Acid Cholic Acid Deoxycholic Acid Lithocholic Acid Fecal Flora 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, M. J., Robinson, I. M., Bucklin, J. A., and Booth, G. D., 1979, Comparison of bacterial populations of the pig caecum and colon based upon enumeration with specific energy sources, Appl. Environ. Microbiol. 37: 1142–1151.Google Scholar
  2. Berg, R. D., 1978, Antagonism among the normal anaerobic bacteria of the mouse gastrointestinal tract determined by immunofluorescence, Appl. Environ. Microbiol. 35: 1066–1073.Google Scholar
  3. Booth, S. J., Johnson, S. S., and Wilkins, T. D., 1977, Bacteriocin production by strains of Bacteroides isolated from human faeces and the role of these strains in the bacterial ecology of the colon, Antimicrob. Agents Chemother. 11: 718–724.Google Scholar
  4. Cooke, E. M., Hettiaratchy, I. G. T., and Buck, A. C., 1972, Fate of ingested Escherichia coli in normal persons, J. Med. Microbiol 5: 361–369.CrossRefGoogle Scholar
  5. Croucher, S. C., Houston, A. P., Bayliss, C. E., and Turner, R. J., 1983, Bacterial populations associated with different regions of the human colon wall, Appl. Environ. Microbiol. 45: 1025–1033.Google Scholar
  6. Decuypere, J. A., Vervaeke, I. J., Henderick, H. K., and Dierick, N. A., 1977, The gastrointestinal cannulation in pigs: A simple technique allowing multiple replacements, J. Anim. Sci. 46: 463–468.Google Scholar
  7. Eastwood, M. A., and Hamilton, D., 1968, Studies on the adsorption of bile salts to nonabsorbed components of diet, Biochim. Biophys. Acta 152: 165–173.Google Scholar
  8. Edwards, C. A., Duerden, B. I., and Read, N. W., 1983, Continuous culture model of the human colon, J. Med. Microbiol. 16:xiii.Google Scholar
  9. Ellis-Pegler, R. B., Crabtree, C., and Lambert, H. P., 1975, The faecal flora of children in the United Kingdom, J. Hyg. Camb. 75: 135–142.CrossRefGoogle Scholar
  10. Fadden, K., Owen, R. W., Hill, M. J., and Mason, A. N., 1984a, The effect of wheat bran fibre on the anaerobic metabolism of cholic acid by mixed faecal bacteria, Biochem. Soc. Trans. 12: 860.Google Scholar
  11. Fadden, K., Owen, R. W., Hill, M. J., Latymer, E., Low, A. G., and Mason, A. N., 1984b, Steroid degradation along the gastrointestinal tract—the use of the cannulated pig as a model system, Biochem. Soc. Trans. 12: 1105–1106.Google Scholar
  12. Fernandez, F., Hill, M. J., Kennedy, H., Todd, E. A., and Truelove, S., 1983, Effect of changes in amount of dietary protein and fat on composition of ileostomy bacterial flora, J. Med. Microbiol 16:xv.Google Scholar
  13. Finegold, S. M., Sutter, V. L., Baule, J. D., and Shmida, K., 1970, The normal flora of ileostomy and transverse colostomy effluents, J. Infect. Dis. 122: 376–381.CrossRefGoogle Scholar
  14. Floch, M. H., Gershengoren, W., Elliot, S., and Spiro, H. M., 1971, Bile acid inhibition of the intestinal microflora a function for simple bile acids? Gastroenterology 61: 228–233.Google Scholar
  15. Freter, R., Stauffer, E., Clevan, D., Holdeman, L. V., and Moore, W. E. C., 1983, Continuous- flow cultures as in vitro models of the ecology of large intestinal flora, Infect. Immun. 39: 666–675.Google Scholar
  16. Fuchs, H. M., Dorfman, S., and Floch, M. H., 1976, The effect of dietary fibre supplementation in man 11. Alteration in fecal physiology and bacterial flora, Am. J. Clin. Nutr. 29: 1443–1447.Google Scholar
  17. Gibbons, R. J., and Kapsimalis, B., 1967, Estimates of the overall rate of growth of the intestinal microflora of hamsters, guinea pigs, and mice, J. Bacteriol. 93: 510–512.Google Scholar
  18. Gorbach, S. L., Nahas, L., Weinstein, L., Leviton, R., and Patterson, J. F., 1967, Studies of intestinal microflora iv. The microflora of ileostomy effluent: A unique microbial ecology, Gastroenterology 53: 574–580.Google Scholar
  19. Gordon, H. A., and Pesti, L., 1971, The gnotobiotic animal as a tool in the study of host microbial relationships, Bacteriol Rev. 35: 390–429.Google Scholar
  20. Hentges, D. J., Maier, B. R., Burton, G. C., Flynn, M. A., and Tsutakawa, R. K., 1977, Effect of a high beef diet on the fecal bacterial flora of humans, Cancer Res. 37: 568–571.Google Scholar
  21. Hill, M. J., 1981, Bile acids in colorectal carcinogenesis, in: Banbury Report 7, Gastrointestinal Cancer: Endogenous Factors, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 365–380.Google Scholar
  22. Hirano, S., and Masuda, N., 1982, Enhancement of the 7a-dehydroxylase activity of a Gram positive anaerobe by Bacteroides and its significance in the 7-dehydroxylation of ursodeoxycholic acid, J. Lipid Res. 29: 1152–1158.Google Scholar
  23. Hori, S., Berghouse, L., Hill, M. J., Hudson, M. J., Rodgers, E., and Lennard-Jones, J. E., 1983, The effect of dietary fibre on the bacterial flora of ileostomy fluid, J. Med. Microbiol. 162:vii.Google Scholar
  24. International Agency for Research on Cancer, Intestinal Microecology Group, 1977, Dietary fibre, transit time, fecal bacteria, steroids and colon cancer in two Scandinavian populations, Lancet 2: 207–211.Google Scholar
  25. Latham, M. J., Brooker, B. E., Pettipher, G. L., and Harris, P. J., 1978, Ruminococcus flavefacians cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne), Appl. Environ. Microbiol. 35: 156–165.Google Scholar
  26. Legakis, N. J., Ioannides, H., Tzannetis, S., Golematis, B., and Papavassiliou, J., 1981, Fecal bacterial flora in patients with colon cancer and control subjects, Zentrabl. Bakteriol. Mikrobiol. Hyg. 251: 54–61.Google Scholar
  27. Lovitt, R. W., and Wimpenny, J. W. T., 1981, The gradostat: A bidirectional compound chemostat and its application in microbiological research, J. Gen. Microbiol. 127: 261–268.Google Scholar
  28. Luckey, T. D., 1977, Bicentennial overview of intestinal microecology 1. New concepts of the anaerobic intestinal flora, Am. J. Clin. Nutr. 30: 1753–1762.Google Scholar
  29. MacDonald, I. A., Singh, G., Mahony, D. E., and Meier, C. E., 1978, Effect of pH on bile salt degradation by mixed fecal cultures, Steroids 32: 245–256.CrossRefGoogle Scholar
  30. Mallett, A. K., Bearne, C. A., and Rowland, I. R., 1983, Metabolic activity and enzyme induction in rat fecal microflora maintained in continuous culture, Appl Environ. Microbiol. 46: 591–595.Google Scholar
  31. Mattiasson, B., and Hahn, Hägerdal, B., 1982, Microenvironmental effects on metabolic behaviour of immobilized cells. A hypothesis, Eur. J. Appl. Microbiol. Biotechnol. 16: 52–55.CrossRefGoogle Scholar
  32. Miller, R. S., and Hoskins, L. C., 1981, Mucin degradation in human colon ecosystems, Gastroenterology 81: 759–765.Google Scholar
  33. Miller, T. L., and Wolin, M. J., 1981, Fermentation by the human large intestine microbial community in an in vitro semi-continuous culture system, Appl. Environ. Microbiol. 42: 400–407.Google Scholar
  34. Minato, H., and Suto, T., 1978, Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom, J. Gen. Appl. Microbiol. 24: 1–16.CrossRefGoogle Scholar
  35. Narisawa, T., Magadia, N. E., Weisburger, J. H., and Wynder, E. L., 1974, Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N-nitro-N-nitroso-guanidine in rats, J. Nat. Cancer Inst. 55: 1093–1097.Google Scholar
  36. Owen, R. W., Dodo, M., Thompson, M. H., and Hill, M. J., 1983, The fecal ratio of lithocholic acid to deoxycholic acid may be an important aetiological factor in colorectal cancer, Eur. J. Cancer Clin. Oncol. 19: 1307.Google Scholar
  37. Pietroiusti, A., Giuliano, M., Vita, S., Ciarniello, P., and Caprilli, R., 1983, Fecal pH and cancer of the large bowel, Gastroenterology 84: 1237.Google Scholar
  38. Reddy, B. S., Hedges, A. R., Laakso, K., and Wynder, E. L., 1978, Metabolic epidemiology of large bowel cancer fecal bulk and constituents of high risk North American and low risk Finnish populations, Cancer 42:2832–2838,CrossRefGoogle Scholar
  39. Reddy, B. S., and Wynder, E. L., 1977, Metabolic epidemiology of colon cancer. Fecal bile acids and neutral sterols in colon cancer patients with adenomatous polyps, Cancer 39: 2533–2539.CrossRefGoogle Scholar
  40. Reyniers, J. A., Wagner, M., Luckey, T. D., and Gordon, H. A., 1960, Survey of germ-free animals: The White Wyndotte bantam and White Leghorn chicken, in: Lobund Reports, No. 3, University of Notre Dame Press, Notre Dame, Indiana, pp. 7–159.Google Scholar
  41. Robinson, I. M., Allison, M. J., and Bucklin, J. A., 1981, Characterization of the caecal bacteria of normal pigs, Appl. Environ. Microbiol. 41: 950–955.Google Scholar
  42. Rotomi, V. O., and Duerden, B. I., 1981, The developement of the bacterial flora in normal neonates, J. Med. Microbiol. 14: 51–62.CrossRefGoogle Scholar
  43. Rufener, W. H., Nelson, W. O., and Wolin, M. J., 1963, Maintenance of the rumen population in continuous culture, Appl Microbiol. 11: 169–201.Google Scholar
  44. Russell, E. G., 1979, Types and distribution of anaerobic bacteria in the large intestine of pigs, Appl. Environ. Microbiol. 37: 187–193.Google Scholar
  45. Saquet, E., Leprince, C., and Riottot, M., 1982, Dietary fibre and cholesterol and bile acid metabolism in axenic and holoxenic rats II. Effects of pectin, Reprod. Nutr. Dev. 22: 575–581.CrossRefGoogle Scholar
  46. Sambrook, I. E., 1979, Studies on digestion and absorption in the intestines of growing pigs. 8. Measurements of the flow of total lipids, acid-detergent fibre and volatile fatty acids, Br. J. Nutr. 42: 279–287.CrossRefGoogle Scholar
  47. Savage, D. C., 1969, Localization of certain indigenous microorganisms on the ileal villi of rats, J. Bacteriol. 97: 1505–1506.Google Scholar
  48. Slyter, L. L., and Putnam, P. A., 1964, Modification of a device for maintenance of the rumen microbial population in continuous culture, Appl. Microbiol. 12: 374–377.Google Scholar
  49. Smith-Barbaro, P., Hanson, D., and Reddy, B. S., 1981, Carcinogen binding to various types of dietary fibre, J. Nat. Cancer Inst. 67: 495–497.Google Scholar
  50. Stark, P. L., and Lee, A., 1982, The bacterial colonization of the large bowel of pre-term and low birth weight neonates, J. Hyg. Camb. 89: 59–67.CrossRefGoogle Scholar
  51. Stephen, A. H., and Cummings, J. H., 1980, Mechanism of action of dietary fibre in the human colon, Nature 284: 283–284.CrossRefGoogle Scholar
  52. Suzuki, K., Benno, Y., Mitsuoka, T., Takebes, S., Kobashi, K., and Hase, J., 1979, Urease- producing species of intestinal anaerobes and their activities, Appl. Environ. Microbiol. 37: 379–382.Google Scholar
  53. Tazume, S., 1979, The role of the intestinal microflora in bile acid metabolism. Comparative studies on the bile acids of germ-free and conventional mice, Keio Igaku 56: 103–116.Google Scholar
  54. Thornton, J. R., 1981, High colonic pH promotes colorectal cancer, Lancet 1: 1081–1082.CrossRefGoogle Scholar
  55. Tomkins, A. M., Bradley, A. K., Oswald, S., and Drasar, B. S., 1981, Diet and the fecal microflora of infants, children and adults in rural Nigeria and urban U.K., J. Hyg. Camb. 86: 285–293.CrossRefGoogle Scholar
  56. Van Dokkum, W., Deboer, B. C. J., Van Faasen, A., Pikaar, N. A., and Hermus, R. J. J., 1983, Diet fecal pH and colorectal cancer, Br. J. Cancer 48: 109–110.CrossRefGoogle Scholar
  57. Veilleux, B. G., and Rowland, I., 1981, Simulation of the rat intestinal ecosystem using a two- stage continuous culture system, J. Gen. Microbiol. 123: 103–115.Google Scholar
  58. Walker, A. R. P., 1976, Colon cancer and diet with special reference to intakes of fat and fibre, Am. J. Clin. Nutr. 29: 1417–1426.Google Scholar
  59. Wilpart, M., Mainguet, P., Maskens, A., and Roberfroid, M., 1983, Mutagenicity of 1,2-dimethylhydrazine towards Salmonella typhimurium, co-mutagenic effect of secondary biliary acids, Carcinogenesis 4: 45–48.CrossRefGoogle Scholar
  60. Zubrzycki, L., and Spaulding, E. H., 1957, Application of the continuous flow culture to studies on the normal fecal flora, Bacteriol. Proc. 1957: 101.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Kathleen Fadden
    • 1
  1. 1.Bacterial Metabolism Research LaboratoryPHLS Centre for Applied Microbiology and ResearchSalisbury, WiltshireUK

Personalised recommendations