Dietary Fiber pp 151-166 | Cite as

Methane Production and Excretion: A Marker of Cecal Fermentation

  • Martin A. Eastwood
  • Linda F. Mckay
  • W. Gordon Brydon


Dietary fiber is a complex heterogeneous material increasingly used in the management of colorectal and other disease. Dietary fiber can be defined as that component of plant cells resistant to human alimentary enzyme action (Trowell, 1974). Some studies of fiber have shown a degree of hydrolysis by colonic bacteria. However, which components of fiber are hydrolyzed and the extent of their breakdown in the human colon are not clear. Not enough is known of the metabolism of fiber in the colon. The effect of dietary fiber on gastrointestinal function in man depends on the type of fiber (Royal College of Physicians, 1981). It is now appreciated that cereals, bran, and vegetable fiber behave differently along the gastrointestinal tract (Stephens and Cummings, 1980). Indirect evidence suggests that the cecum is a major site for metabolism of certain fibers. Anaerobic bacteria in the colon produce methane, hydrogen, volatile fatty acids, and carbon dioxide. It has been suggested that the fiber affects stool weight either directly (Smith et al., 1981), by bacterial mass (Stephens and Cummings, 1980), or by volatile fatty acids (VFA) derived therefrom (Hellendoorn, 1978). Retention of water by the fiber matrix as with cereal bran influences stool weight (Smith et al., 1981).


Irritable Bowel Syndrome Wheat Bran Methane Production Volatile Fatty Acid Brain Heart Infusion Broth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bond, J. H., Engel, R. R., and Levitt, M. D., 1971, Factors influencing pulmonary methane excretion in man, J. Exp. Med. 133: 572–588.CrossRefGoogle Scholar
  2. Calloway, D. H., 1966, Respiratory hydrogen and methane as affected by consumption of gas- forming foods, Gastroenterology 51: 383–389.Google Scholar
  3. Calloway, D. H., 1968, Gas in the alimentary canal, in: Handbook of Physiology, Section 6, Alimentary Canal, Volume V, Bile, Digestion, Ruminal Physiology (C. Code, and W. Heidel, eds.), American Physiological Society, Washington, D.C.Google Scholar
  4. Calloway, D. H., and Murphy, E. L., 1968, The use of expired air to measure intestinal gas formation, Ann. N. Y. Acad. Sci. 150: 82–95.CrossRefGoogle Scholar
  5. Cummings, J. H., 1981, Short chain fatty acids in the human colon, Gut 22: 763–779.CrossRefGoogle Scholar
  6. Evrard, E., and Janssen, G., 1968, Gas-liquid chromatographic determination of human faecal bile acids, J. Lipid Res. 9: 226–236.Google Scholar
  7. Gumbmann, H. R., and Williams, S. N., 1971, The quantitative collection and determination of hydrogen gas from the rat and factors affecting its production, Proc. Soc. Exp. Biol. Med. 136: 1171–1175.Google Scholar
  8. Haines, A., Metz, G., Dilawari, J., Blendis, L., and Wiggins, H., 1977, Breath methane in patients with cancer of the large bowel, Lancet 2: 481–483.CrossRefGoogle Scholar
  9. Hellendoorn, E. W., 1978, Fermentation as the principle cause of the physiological activity of indigestible food residue, in: Topics in Dietary Fiber Research, ( G. A. Spiller, ed.), Plenum, New York, pp. 127–168.Google Scholar
  10. Hickey, C. A., Calloway, D. H., and Murphy, E. L., 1972, Intestinal gas production following ingestion of fruits and fruit juices, Am. J. Dig. Dis. 17: 383–389.CrossRefGoogle Scholar
  11. Hinton, J. M., Lennard-Jones, J. E., and Young, A. C., 1969, A new method for studying gut transit times using radio-opaque markers, Gut 10: 842 - 847.CrossRefGoogle Scholar
  12. Hungate, R. E., 1968, Ruminal fermentation, in: Handbook of Physiology, Section 6, Alimentary Canal, Volume V, Bile, Digestion, Ruminal Physiology (C. Code and W. Heidel, eds.), American Physiological Society, Washington, D. C., p. 2725.Google Scholar
  13. Hungate, R. E., 1976, Microbial activities related to mammalian digestion and absorption of food, in: Fibre in Human Nutrition ( G. Spiller and R. J. Amen, eds.), Plenum, New York, p. 131.Google Scholar
  14. Levitt, M. D., 1969, Hydrogen gas in man, N. Eng. J. Med. 281: 122–127.CrossRefGoogle Scholar
  15. Levitt, M. D., and Bond, J. H., 1970, Volume, composition and source of intestinal gas, Progr. Gastroenterol. 59: 921–929.Google Scholar
  16. Levitt, M. D., and Ingelfinger, F. J., 1968, Hydrogen and methane production in man, Ann. N. Y. Acad. Sci. 150: 75–81.CrossRefGoogle Scholar
  17. Mah, R. A., Ward, D. M., Baresi, L., and Glass, T. L., 1977, Biogenesisof methane, Annu. Rev. Microbiol. 31: 309–341.CrossRefGoogle Scholar
  18. McKay, L. F., and Eastwood, M. A., 1983, The influence of dietary fibre on caecal metabolism in the rat, Br. J. Nutr. 50: 679–684.CrossRefGoogle Scholar
  19. McKay, L. F., and Eastwood, M. A. 1984, A comparison of bacterial fermentation endproducts in carnivores, herbivores and primates including man, Proc. Nutr. Soc. 43: 35A.CrossRefGoogle Scholar
  20. McKay, L. F., Brydon, W. G., Eastwood, M. A., and Smith, J. H., 1981, The influence of pentose on breath methane, Am. J. Clin. Nutr. 34: 2728–2733.Google Scholar
  21. McKay, L. F., Holbrook, W. P., and Eastwood, M. A., 1982, Methane and hydrogen production by human intestinal anaerobic bacteria, Acta. Pathol. Immunol. Scand. B. 90: 257–260.Google Scholar
  22. McKay, L. F., Brydon, W. G., Eastwood, M. A., and Housley, E., 1983a, The influence of peripheral vascular disease on methanogenesis in man, Atherosclerosis 47: 77–81.CrossRefGoogle Scholar
  23. McKay, L. F., Smith, R. G., Eastwood, M. A., Walsh, S. D., and Cruikshank, J. G., 1983b, An investigation of colonic function in the elderly, Age Ageing 12: 105–110.CrossRefGoogle Scholar
  24. McKay, L. F., Eastwood, M. A., and Brydon, W. G., 1985, Methane excretion in man—A study of breath, flatus and faeces, Gut, 26: 69–74.CrossRefGoogle Scholar
  25. McLean Ross, A. H., McKay, L. F., Busuttil, A., Anderson, D. M. W., Brydon, W. G., and Eastwood, M. A., 1981, Gum arabic metabolism in the rat colon, Proc. Nutr. Soc. 40: 73A.Google Scholar
  26. McLean Ross, A. H., Eastwood, M. A., Brydon, W. G., Busuttil, A., McKay, L. F., and Anderson, D. M. W., 1984, A study of the effects of dietary gum arabic in the rat, Br. J. Nutr. 51: 47–56.CrossRefGoogle Scholar
  27. McLean Ross, A. H., Eastwood, M. A., Brydon, W. G., Anderson, J. R., and Anderson, D. M. W., 1983, A study of the effects of dietary gum arabic in humans, Am. J. Clin. Nutr. 37: 368–375.Google Scholar
  28. Metz, G., Gassull, M. A., Leeds, A. R., Blendis, L. M., and Jenkins, D. J. A., 1976, A simple method of measuring breath hydrogen in carbohydrate malabsorption by end-expiratory sampling, Clin. Sci. Molec. Med. 50: 237–240.Google Scholar
  29. Nottingham, P. M., and Hungate, R. E., 1968, Isolation of methanogenic bacteria from faeces of man, J. Bacteriol. 96: 2178–2179.Google Scholar
  30. Paul, A. A., and Southgate, D. A. T., 1978, McCance and Widdowsons: The Composition of Foods, 4th ed., Her Majesty’s Stationery Office, London.Google Scholar
  31. Pitt, P., de Bruijn, K. M., Beeching, M. F., Goldberg, E., and Blendis, L. M., 1980, Studies on breath methane: The effect of ethnic origins and lactulose, Gut 21: 951–959.Google Scholar
  32. Prins, R. A., 1979, Methanogenesis in the gastrointestinal tract of ruminants and man, Antonie van Leeuwenhoek 45: 339–345.CrossRefGoogle Scholar
  33. Robertson, J. A., Brydon, W. G., Tadesse, K., Wenham, P., Walls, A., and Eastwood, M. A., 1979, The effect of raw carrot on serum lipids and colon function, Am. J. Clin. Nutr. 32: 1889–1892.Google Scholar
  34. Royal College of Physicians, 1981, Medical Aspects of Dietary Fibre, Pitman Medical, London.Google Scholar
  35. Savage, D. C., 1977, Interaction between the host and its microbes, in: Microbial Ecology of the Gut ( R. T. J. Clarke and T. Buachop, eds.), Academic, New York, pp. 277–310.Google Scholar
  36. Savage, D. C., 1978, Factors involved in colonization of the gut epithelial surface, Am. J. Clin. Nutr. 31: S131–S135.Google Scholar
  37. Smith, A. N., Drummond, E., and Eastwood, M. A., 1981, The effect of coarse and fine Canadian red spring wheat and French soft wheat bran on colonic motility in patients with diverticular disease, Am. J. Clin. Nutr. 34: 2460–2463.Google Scholar
  38. Southgate, D. A. T., Bailey, B., Colinson, E., and Walker, A. F., 1976, A guide to calculating intakes of dietary fibre, J. Hum. Nutr. 30: 303–313.Google Scholar
  39. Steggerda, F. R., 1968, Gastrointestinal gas following food consumption, Ann. N. Y. Acad. Sci. 150: 57–66.CrossRefGoogle Scholar
  40. Stephens, A. M., and Cummings, J. H., 1980, Mechanisms of action of dietary fibre in the human colon, Nature 284: 283–284.CrossRefGoogle Scholar
  41. Tadesse, K., and Eastwood, M. A., 1977, Breath hydrogen tests and smoking, Lancet 2: 91.CrossRefGoogle Scholar
  42. Tadesse, K., Smith, A., Brydon, W. G., and Eastwood, M. A., 1979, Gas chromatographic technique for combined measurement of hydrogen and methane using thermal conductivity detector, J. Chromatogr. 171: 416–418.CrossRefGoogle Scholar
  43. Tadesse, K., Smith, D., and Eastwood, M. A., 1980, Breath hydrogen and methane excretion patterns in normal man and in clinical practice, Q. J. Exp. Physiol. 65: 85–97.Google Scholar
  44. Trowell, H., 1974, Definitions of fibre (letter), Lancet i:503.CrossRefGoogle Scholar
  45. Varley, H., 1967, Practical Clinical Biochemistry, Heinemann, London, Chapter XVI, p. 325.Google Scholar
  46. Wolfe, R. S., 1971, Microbial formation of methane, Adv. Microb. Physiol. 6: 107–146.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Martin A. Eastwood
    • 1
  • Linda F. Mckay
    • 1
  • W. Gordon Brydon
    • 1
  1. 1.Wolfson Gastrointestinal Laboratories, Department of MedicineWestern General HospitalEdinburghUK

Personalised recommendations