Oxidations of Organic Compounds with Osmium Tetroxide

  • Hari Shankar Singh

Abstract

Metal compounds like potassium permanganate, hexacyanoferrate(III), ruthenium tetroxide, and osmium tetroxide are widely employed as oxidants in an alkaline medium. Apart from synthetic applications in the laboratory these oxidants are also important in industrial syntheses. Osmium tetroxide is the oldest compound and has been generally used for hydroxylation of olefins. Ruthenium tetroxide reacts in the same way as a vigorous oxidant even under mild conditions.

Keywords

Hydrolysis Benzene Styrene Alkyne Liquefaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Ogawa, Bull. Chem. Soc. Jpn 6, 314 (1931).Google Scholar
  2. 2.
    A. Zalkin and D. H. Templeton, Acta Crystallagr. 6, 106 (1953).Google Scholar
  3. 3.
    A. F. Wells, in Structural Inorganic Chemistry, 3rd ed., 920, Oxford U.P., Oxford, 1962.Google Scholar
  4. 4.
    F. Krauss and D. Wilken, Z. Anorg. Chem. 145, 151–167 (1925).Google Scholar
  5. 5.
    W. P. Griffith, J. Chem. Soc. Pt I 241–249 (1964).Google Scholar
  6. 6.
    W. P. Griffith, in The Chemistry of the Rarer Platinum Metals, pp. 42–125, Interscience, London, 1967.Google Scholar
  7. 7.
    J. C. Riemersma, Biochem. Biophys. Acta 152. 718–727 (1968).Google Scholar
  8. 8.
    E. D. Korn. J. Cell. Biol. 34, 627–38 (1967).Google Scholar
  9. 9.
    V. B. Wigglesworth, Proc. R. Soc. London, Ser. B147, 185–199 (1957).Google Scholar
  10. 10.
    J. R. Baker, J. Histochem. Cytochem. 6, 303–306 (1958).Google Scholar
  11. 11.
    M. J. S. Dewar, Ind. Chim. Beige 15, 181–185 (1950).Google Scholar
  12. 12.
    M. J. S. Dewar, Chim. Zentralblv. 1, 1716–1717 (1951).Google Scholar
  13. 13.
    M. J. S. Dewar and H. C. Longust-Hlggins, Proc. R. Soc. London Ser. A. 214, 482 (1952).Google Scholar
  14. 14.
    M. J. S. Dewar, J. Am. Chem. Soc. 74, 3341–3345 (1952).Google Scholar
  15. 15.
    K. B. Sharpless, A. Y. Terasishi, and J. E. Backvall, J. Am. Chem. Soc. 99, 3120–3123 (1977).Google Scholar
  16. 16.
    M. Zeiikoffand, H. A. Taylor, J. Am. Chem. Soc. 72. 5039–5042 (1950).Google Scholar
  17. 17.
    R. Criegee, Justus Liebigs, Ann. Chem. 522, 75–96 (1936).Google Scholar
  18. 18.
    R. Criegee, B. Marchand, and H. Wannowius, Justus Liebigs Ann. Chem. 550, 99–133 (1942).Google Scholar
  19. 19.
    F. A. Cotton and G. Willkinson, in Advanced Inorganic Chemistry, 3rd Ed., pp. 1000–1016, Wiley, New York, 1972.Google Scholar
  20. 20.
    H. O. House, in Modern Synthetic Reactions, 2nd Ed., p. 277, Benjamin, San Francisco, 1972.Google Scholar
  21. 21.
    R. Criegee, Angew Chem. 50, 153–155 (1937).Google Scholar
  22. 22.
    R. Criegee, Angew. Chem. 51, 519–520 (1938).Google Scholar
  23. 23.
    R. Criegee, Congr. Int. Chim., Roma 3, 895–904 (1938).Google Scholar
  24. 24.
    L. G. Margilli, B. E. Hanson, T. J. Kistenmacher, L. A. Eppg, and R. C. Stewart; Inorg. Chem. 15, 1661–1665 (1976).Google Scholar
  25. 25.
    R. J. Collin, J. Jones, and W. P. Griffith, J. Chem. Soc. Dalton Trans. 1974, 1094–1097.Google Scholar
  26. 26.
    G. F. Bahr, Exp. Cell. Res. 7, 457–79 (1974).Google Scholar
  27. 27.
    W. P. Griffith and R. Rosetti, J. Chem. Soc. Dalton Trans. 1972, 1449–1453.Google Scholar
  28. 28.
    J. A. Ragazzo and E. J. Behrman, Bioinorg. Chem. 5, 342–352 (1976).Google Scholar
  29. 29.
    F. B. Daniel and E. J. Behrman, J. Am. Chem. Soc. 97, 7352–7358 (1975).Google Scholar
  30. 30.
    F. B. Daniel and E. J. Behrman, Fed. Proc. Fed. Am. Soc. Exp. Biol. 33, 1538 (1974).Google Scholar
  31. 31.
    L. R. Subbaraman, J. Subbaraman, and E. J. Behrman, Inorg. Chem. 11, 2621–2627 (1972).Google Scholar
  32. 32.
    L. R. Subbaraman, J. Subbaraman, and E. J. Behrman, Bioinorg. Chem. I, 35–55 (1971).Google Scholar
  33. 33.
    C. H. Chang, M. Beer, and L. G. Marzilli, Biochemistry 16, 33–38 (1977).Google Scholar
  34. 34.
    J. J. Ross and P. B. Sigler, Biochemistry 13, 5102–5105 (1974).Google Scholar
  35. 35.
    C. Paal and C. Amberger, Chem. Ber. 40, 1395–1396 (1907).Google Scholar
  36. 36.
    L. R. Subbaraman, J. Subbaraman, and E. J. Behrman. J. Org. Chem. 38, 1499–1504 (1973).Google Scholar
  37. 37.
    A. B. Nikal’skli, Yu. I. D’Yachenko, and L. Myund, Russ. J. Inorg. Chem. 19, 1368–1370 (1974).Google Scholar
  38. 38.
    A. J. Nielson and W. P. Griffith, J. Chem. Soc. Dalton Trans. 1979, 1084–1088.Google Scholar
  39. 39.
    T. P. Murry, U. P. Singh, and R. K. Brown, Can. J. Chem. 49, 2132–2138 (1971).Google Scholar
  40. 40.
    B. F. G. Johnson, J. Lewis, D. G. Parkar, and R. S. Postie, J. Chem. Soc. Dalton Trans. 1977, 794–797.Google Scholar
  41. 41.
    K. Burton, Biochem. J. 104, 686–694 (1967).Google Scholar
  42. 42.
    R. M. Srivastava and R. K. Brown, Can. J. Chem. 42, 1339–1342 (1971).Google Scholar
  43. 43.
    W. R. Midden and E. J. Behrman, FEBS. Lett. 103, 300–302 (1979).Google Scholar
  44. 44.
    S. Bernstein, R. H. Lenhard, W. S. Allen, M. Heller, R. Littel, S. M. Stolar, L. I. Feldman, and R. H. Blank, J. Am. Chem. Soc. 78, 5693–5694 (1956).Google Scholar
  45. 45.
    C. H. Chang, H. Ford, and E. J. Behrman, Inorg. Chim. Acta 55, 77–80 (1981).Google Scholar
  46. 46.
    B. Krishna and H. S. Singh, Z. Phys. Chem. 231, 399–06 (1966).Google Scholar
  47. 47.
    H. S. Singh, V. P. Singh, and D. P. Pandey, Chem. Ser., 12, 166–170 (1977).Google Scholar
  48. 48.
    H. S. Singh, S. P. Singh, S. M. Singh, R. K. Singh, and A. K. Sisodia, J. Phys. Chem. 79, 1920–1924 (1975).Google Scholar
  49. 49.
    M. P. Singh, H. S. Singh, Lallu Singh, and R. K. Singh, Proc. Ind. Natl. Sci. Acad. 41, 170–177 (1975).Google Scholar
  50. 50.
    M. P. Singh, H. S. Singh, B. Singh, A. K. Singh, and A. K. Sisodia. Ind. J. Chem. 13, 489–92 (1975).Google Scholar
  51. 51.
    M. P. Singh, H. S. Singh, B. N. Singh, Narendra Singh, and Mandhir Kumar, Monatesh. Chem. 109, 1373–1382 (1978).Google Scholar
  52. 52.
    H. S. Singh, V. P. Singh, J. M. Singh, and P. N. Srivastava, Ind. J. Chem. 15A, 520–523 (1977).Google Scholar
  53. 53.
    H. S. Singh, V. P. Singh, J. M. Singh, and P. N. Srivastava, J. Catal. 49, 135–140 (1977).Google Scholar
  54. 54.
    H. S. Singh, A. K. Sisodia, S. M. Singh, R. K. Singh, and R. N. Singh, J. Chim. Phys. 73, 283–286 (1976).Google Scholar
  55. 55.
    H. S. Singh, K. K. Singh, P. Singh, and B. K. Singh, unpublished work (1981).Google Scholar
  56. 56.
    P. C. Pandey, V. N. Singh, and M. P. Singh, Ind. J. Chem. 9, 430–431 (1971).Google Scholar
  57. 57.
    V. N. Singh, H. S. Singh, and B. B. L. Saxena, J. Am. Chem. Soc. 91, 2643–2648 (1969).Google Scholar
  58. 58.
    N. P. Singh, V. N. Singh, H. S. Singh, and M. P. Singh, Aust. J. Chem. 23, 921–928 (1970).Google Scholar
  59. 59.
    V. Lai, V. N. Singh, H. S. Singh, and M. P. Singh, Ind. J. Chem. 10, 392–394 (1972).Google Scholar
  60. 60.
    M. P. Singh, H. S. Singh, B. Singh, A. K. Singh, and Amod K. Singh, Proc. Ind. Natl Sci. Acad. 41, 331–338 (1975).Google Scholar
  61. 61.
    M. P. Singh, H. S. Singh, B. S. Arya, A. K. Singh, and A. K. Sisodia, Ind. J. Chem. 13, 112–115 (1975).Google Scholar
  62. 62.
    N. Paul Rylander, Engelhard Ind. Tech. Bull. 9, 90–95 (1968).Google Scholar
  63. 63.
    P. Markus and S. Stulgiene, Zh. Anal. Khim. 23, 443–444 (1968).Google Scholar
  64. 64.
    N. P. Singh, V. N. Singh, and M. P. Singh, Aust. J. Chem. 21, 2913–2918 (1968).Google Scholar
  65. 65.
    B. Singh, B. B. Singh, and R. P. Singh, Inorg. NucL Chem. 43, 1283–1285 (1981).Google Scholar
  66. 66.
    D. H. R. Barton, DA. J. Ives, and B. R. Thomas, J. Chem. Soc. 1954, 903–907.Google Scholar
  67. 67.
    J. Castell, G. D. Meakins, and R. Swindells, J. Chem. Soc. 1962, 2917–2924.Google Scholar
  68. 68.
    D. H. R. Barton and D. Elad, J. Chem. Soc. 1956, 2085–2090.Google Scholar
  69. 69.
    R. V. Casciani and E. J. Behrman, Inorg. Chim. Acta. 26, 69–72 (1978).Google Scholar
  70. 70.
    G. M. Badger and K. R. Lynn, J. Chem. Soc. 1950, 1726–1729.Google Scholar
  71. 71.
    H. B. Henbest, W. R. Jackson, and B. C. O. Robb, J. Chem. Soc. B 1966, 803.Google Scholar
  72. 72.
    Y. F. Shealy and J. D. Clayton, J. Am. Chem. Soc. 91, 3075–3083 (1969).Google Scholar
  73. 73.
    D. Vyas and G. W. Hay, Can. J. Chem. 53, 1362–1366 (1975).Google Scholar
  74. 74.
    M. Uskokovic, M. Gut, E. Trachtenberg, W. Klyne, and R. I. Dorfman, J. Am. Chem. Soc. 82, 4965–4969 (1960).Google Scholar
  75. 75.
    A. Serini and W. Longemann, Chem. Ber. 71, 1362–1366 (1938).Google Scholar
  76. 76.
    H. Wieland and H. Behringer, Justus Liebigs Ann. Chem. 549, 209–237 (1941).Google Scholar
  77. 77.
    H. Wieldand and W. Benand, Chem. Ber. 75, 1708–1715 (1942).Google Scholar
  78. 78.
    J. Booth, E. Boyland, and E. E. Turner, J. Chem. Soc. 1950, 1188–1190.Google Scholar
  79. 79.
    J. W. Cook and R. Schoental, J. Chem. Soc. 1948, 170–173.Google Scholar
  80. 80.
    J. W. Cook and R. Schoental, Nature (London) 161, 237–238 (1948).Google Scholar
  81. 81.
    K. Tanaka, J. Biol. Chem. 247, 7465–7478 (1972).Google Scholar
  82. 82.
    M. Shroder and W. P. Griffith, J. Chem. Soc. Dalton Trans. 1978, 1599–1602.Google Scholar
  83. 83.
    G. M. Badger, J. Chem. Soc. 1949, 456–463.Google Scholar
  84. 84.
    H. Yagi, G. M. Holder, P. M. Daneette, O. Hernandex, M. J. C. Yeh, R. A. Le Hahiev, and D. M. Jerine, J. Org. Chem. 41, 977–985 (1976).Google Scholar
  85. 85.
    J. V. Silverton, P. M. Dansette, and D. M. Jerine, Tetrahedron Lett. 1976, 1557–1560.Google Scholar
  86. 86.
    R. Criegee, E. Hoger, G. Huber, P. Kruck, F. Marktscheflel, and H. Schellenberger, Justus Liebigs Ann. Chem. 599, 81–124 (1956).Google Scholar
  87. 87.
    G. Wolczunowicz, L. Bors, F. Cocu, and T. Pasternak, Helv. Chim. Acta 53, 2288–2295 (1970).Google Scholar
  88. 88.
    A. C. Cope, R. A. Pike, and C. F. Spencer, J. Am. Chem. Soc. 75, 3212–3215 (1953).Google Scholar
  89. 89.
    R. W. Freerksen, M. L. Raggio, C. A. Thomas, and D. S. Watt, J. Org. Chem. 44, 702–710 (1979).Google Scholar
  90. 90.
    A. D. Tail, Steroids 20, 531–542 (1972).Google Scholar
  91. 91.
    T. Kubota and F. Hayashi, Tetrahedron. 23, 995–1006 (1967).Google Scholar
  92. 92.
    Martin Schroder, Chem. Rev. 80, 187–213 (1980).Google Scholar
  93. 93.
    K. B. Sharpless and D. R. Williams, Tetrahedron Lett. 35, 3045–3046 (1975).Google Scholar
  94. 94.
    C. B. Hudson, A. V. Robertson, and W. R. J. Simpson, Aust. J. Chem. 21, 769–782 (1968).Google Scholar
  95. 95.
    A. B. Mauger and B. Witcop, Chem. Rev. 66, 47–86 (1966).Google Scholar
  96. 96.
    F. D. Gunstone, Adv. Org. Chem. 1, 103–147 (1960).Google Scholar
  97. 97.
    J. Baran, J. Org. Chem. 25, 257 (1960).Google Scholar
  98. 98.
    R. F. Heldweg, H. Hogeveen, and E. P. Schudde, J. Org. Chem. 43, 1912–1916 (1978).Google Scholar
  99. 99.
    G. Snatzke and H. W. Fehlhaber, Justus Liebigs. Ann. Chem. 663, 123–135 (1963).Google Scholar
  100. 100.
    D. G. Lee and Matthijs Van Den Engh, in Oxidation in Organic Chemistry, W. S. Trahanovsky, Ed., Part B, pp. 177–227, Academic, New York, 1973.Google Scholar
  101. 101.
    A. Banaszek and A. Zamozski, Carbohydr. Res. 25, 453–455 (1972).Google Scholar
  102. 102.
    P. Jacquignon, O. Perin-Roussel, F. Perin, O. Chalvet, J. M. Lhoste, A. Mathieu, B. Sarpearas, P. Viallet, and F. Zajdela, Cand. J. Chem. 53, 1670–1676 (1976).Google Scholar
  103. 103.
    N. A. Milas and S. Sussaman, J. Am. Chem. Soc. 58, 1302–1304 (1936).Google Scholar
  104. 104.
    N. A. Milas and S. Sussaman, J. Am. Chem. Soc. 59, 2345–2347 (1937).Google Scholar
  105. 105.
    N. A. Milas, S. Sussaman, and H. S. Mason, J. Am. Chem. Soc. 61, 1844–1847 (1939).Google Scholar
  106. 106.
    J. Csanyi, Acta. Chim. Acad. Sci. Hung. 21, 35–40 (1959).Google Scholar
  107. 107.
    N. A. Milas, in The Chemistry of Petroleum Hydrocarbons, Vol. II, Chap. 37, B. T. Books, Ed., Reinhold, New York, 1955.Google Scholar
  108. 108.
    C. J. Norton and R. E. White, Adv. Chem. Ser. No. 51, 1 (1965).Google Scholar
  109. 109.
    N. A. Milas, J. H. Trepagnier, J. T. Nolan, and M. I. Illiopulos, J. Am. Chem. Soc. 81, 4730–4733 (1959).Google Scholar
  110. 110.
    L. Tschugajeff and I. Bikerman, Z. Anorg. Chem. 172, 229–236 (1928).Google Scholar
  111. 111.
    J. W. Cook and R. Schoentai, J. Chem. Soc. 1950, 47–54.Google Scholar
  112. 112.
    N. A. Milas and L. S. Maloney, J. Am. Chem. Soc.62, 1841–1843 (1940).Google Scholar
  113. 113.
    A. Cope, S. W. Fenton, and C. F. Spencer, J. Am. Chem. Soc.74, 5884–5888 (1952).Google Scholar
  114. 114.
    J. D. Roberts and C. W. Sauer, J. Am. Chem. Soc.71, 3925–3929 (1949).Google Scholar
  115. 115.
    J. Y. Savolie and P. Brassard, Can. J. Chem.49, 3515–3523 (1971).Google Scholar
  116. 116.
    A. Butenandt and H. Wolz, Chem. Ber. 71B, 1483–1487 (1938).Google Scholar
  117. 117.
    R. Schlibe and H. D. Black, German Oflen. 2602646 (1977); Chem. Abstr. 87, P168198 (1977).Google Scholar
  118. 118.
    W. D. Lloyed, B. J. Navarette, and M. F. Shaw, Synthesis 1972, 610–611.Google Scholar
  119. 119.
    M. Mugdan and D. P. Young, J. Chem. Soc. 1948, 2988–2990 (1949).Google Scholar
  120. 120.
    K. A. Hofmann, Chem. Ber. 45, 3329–3336 (1912).Google Scholar
  121. 121.
    G. Braun, J. Am. Chem. Soc. 51, 228–247 (1929).Google Scholar
  122. 122.
    G. Braun, J. Am. Chem. Soc.52, 3188–3191 (1930).Google Scholar
  123. 123.
    B. M. Trost, J. M. Tinko, and J. L. Stanton, J. Chem. Soc. Chem. Commun. 1978, 436–438.Google Scholar
  124. 124.
    P. A. Grieco, Y. Ohfune, Y. Yokoyama, and W. Owens, J. Am. Chem. Soc. 101, 4749–4752 (1979).Google Scholar
  125. 125.
    M. F. Clarke and L. N. Owen, J. Chem. Soc. 1949, 315–320.Google Scholar
  126. 126.
    N. A. Milas and E. M. Terry, J. Am. Chem. Soc. 47, 1412–1418 (1925).Google Scholar
  127. 127.
    E. M. Terry and N. A. Milas, J. Am. Chem. Soc. 48, 2647–2652 (1926).Google Scholar
  128. 128.
    N. A. Milas, J. Am. Chem. Soc. 49, 2005–2011 (1927).Google Scholar
  129. 129.
    G. Braun, J. Am. Chem. Soc.52, 3176–3185 (1930).Google Scholar
  130. 130.
    J. W. E. Glattfield and E. Rietz, J. Am. Chem. Soc. PartI 62, 974–977 (1940).Google Scholar
  131. 131.
    G. Braun, J. Am. Chem. Soc. 54, 1133–1137 (1932).Google Scholar
  132. 132.
    Tublane and B. Waegell, Angew. Chem. Int. Ed. (Eng.) 11.640–641 (1972).Google Scholar
  133. 133.
    K. B. Sharpless and K. Akashi, J. Am. Chem. Soc. 98, 1986–1987 (1976).Google Scholar
  134. 134.
    K. Akashi, R. E. Palermo and K. B. Sharpless, J. Org. Chem.43, 2063–2066 (1978).Google Scholar
  135. 135.
    A. Bayers and W. J. Hickinbottom, J. Chem. Soc. 1948, 1328–1331.Google Scholar
  136. 136.
    M. N. Sheng and W. A. Mameniskis, U. S. Patent No. 4049724 (1977).Google Scholar
  137. 137.
    V. Van. Pheenen, R. C. Kelly, and D. Y. Cha, Tetrahedron Lett.23, 1973–1976 (1976).Google Scholar
  138. 138.
    R. Bucourt, U. S. Patent No. 3383385 (1968).Google Scholar
  139. 139.
    E. J. Corey, R. L. Danheiser, S. Chandrasekaran, P. Siret, G. E. Keck, and J. L. Gras. J. Am. Chem. Soc. 100, 8031–8034 (1978).Google Scholar
  140. 140.
    S. Danishefsky, M. Herama, K. Gornbatz, T. Harayana, E. Berman, and P. Schuda, J. Am. Chem. Soc.100, 6536–6538 (1978).Google Scholar
  141. 141.
    K. Wiesner and J. Santroch, Tetrahedron Lett. 47, 5939–5945 (1966).Google Scholar
  142. 142.
    J. E. McMurry, A. Andrus, G. M. Ksander, J. H. Musser, and M. A. Johnson, J. Am. Chem. Soc. 101, 1330–1332 (1979).Google Scholar
  143. 143.
    F. G. Obsrender and J. A. Dixon, J. Org. Chem.24, 1226–1229 (1959).Google Scholar
  144. 144.
    F. Pappo, D. S. Allen, P. U. Lemieux, and W. S. Johnson, J. Org. Chem.21, 478–79 (1956).Google Scholar
  145. 145.
    L. A. Mitscher, G. W. Clarke III, and P. B. Hudson, Tetrahedron Lett.29, 2553–2556 (1978).Google Scholar
  146. 146.
    S. H. Graham and A. J. S. Williams, J. Chem. Soc. C 1966, 655.Google Scholar
  147. 147.
    R. Willstatter and E. Sonnenfeld, Chem. Ber.46, 2952–2958 (1913).Google Scholar
  148. 148.
    J. Perichon, S. Palous, and R. Buvet, Bull. Soc. Chem. Fr. 1963, 982–988.Google Scholar
  149. 149.
    J. F. Cairns and H. L. Roberts, J. Chem. Soc. C 1968, 640–642.Google Scholar
  150. 150.
    F. M. C. Corporation, Netherlands Appl. 74, 11, 150 (1976); Chem. Abstr. 86, P4925 (1976).Google Scholar
  151. 151.
    T. A. Foglia, P. A. Barr, A. J. Malloy, and M. J. Gostanzo, J. Am. Oil Chem. Soc. 54, 870A-872A (1977).Google Scholar
  152. 152.
    S. P. McManus, C. A. Larson, and R. A. Hean, Synth. Commun.3, 177 (1973).Google Scholar
  153. 153.
    A. R. Graham, A. F. Millidge, and D. P Young, J. Chem. Soc. 1954, 2180–2199.Google Scholar
  154. 154.
    J. A. Deyrup and C. L. Moyer, J. Org. Chem.34, 175–179 (1969).Google Scholar
  155. 155.
    P. A. Crooks and R. Szyndler, Chem. Ind. (London) 1973, 1111–1113.Google Scholar
  156. 156.
    R. E. Parker and N. S. Isaacs, Chem. Rev. 59, 737–799 (1959).Google Scholar
  157. 157.
    G. Bernath and M. Svoboda, Tetrahedron28, 3475–3484 (1972).Google Scholar
  158. 158.
    E. Cherbulieg, A. Yazgi, and J. Rabinowitz, Helv. Chem. Acta 44, 1164–1166 (1961).Google Scholar
  159. 159.
    H. Favre and D. Gravel, Can. J. Chem. 41, 1452–1462 (1963).Google Scholar
  160. 160.
    E. E. Smissman and G. R. Parker, J. Med. Chem. 16, 23–27 (1973).Google Scholar
  161. 161.
    B. M. Vanderbilt and H. B. Hass, Ind. Eng. Chem.32, 35–38 (1940).Google Scholar
  162. 162.
    H. J. Dauben, Jr., H. J. Ringold, R. H. Wade and A. G. Anderson, Jr.. J. Am. Chem. Soc.73. 2359–2361 (1951).Google Scholar
  163. 163.
    D. A. Evans, G. L. Carroll, and L. K. Truesdale, J. Org. Chem.39, 914–917 (1974).Google Scholar
  164. 164.
    A. Hassner, M. E. Lorber, and C. Heathcock. J. Org. Chem.32, 540–549 (1967).Google Scholar
  165. 165.
    A. Hassner and C. Heathcock, Tetrahedron20. 1037–1042 (1964).Google Scholar
  166. 166.
    A. Hassner and C. Heathcock, Tetrahedron Lett.6, 393–395 (1963).Google Scholar
  167. 167.
    G. Drefahl and K. Ponsold, Chem. Ber.93, 519–523 (1960).Google Scholar
  168. 168.
    B. Akermark, Jan-E. Backvall, L. S. Hegedus, K. Zetterberg, K. Surala-Hansen, and K. Sjoberg, J. Organomel. Chem.72, 127–138 (1974).Google Scholar
  169. 169.
    Jan-E. Backvall, Tetrahedron Lett.26, 2225–2228 (1975).Google Scholar
  170. 170.
    Donald W, Patrick, L. K. Truesdale, S. A. Biller, and K. B. Sharpless, J. Org. Chem. 43, 2628–2638 (1978).Google Scholar
  171. 171.
    K. B. Sharpless, D. W. Patrick, L. K. Truesdale, and S. A. Biller, J. Am. Chem. Soc.97, 2305–2307 (1975).Google Scholar
  172. 172.
    A. Slawisch, Z. Anorg. AUg. Chem. 374, 291–296 (1970).Google Scholar
  173. 173.
    A. F. Shihada, Z. Anorg. AUg. Chem. 408, 9–13 (1974).Google Scholar
  174. 174.
    E. G. Rochow, Inorg. Synth.6, 207–208 (1960).Google Scholar
  175. 175.
    N. A. Milas and M. I. Iliopulos, J. Am. Chem. Soc. 81, 6089 (1959).Google Scholar
  176. 176.
    D. Swern, G. N. Billen, and J. T. Scanln., J. Am. Chem. Soc. 68, 1504–1507 (1946).Google Scholar
  177. 177.
    L. Palfry, S. Sabetary, and D. Sontaf, C. R. Acad. Sci., Paris 1973, 941–950 (1931).Google Scholar
  178. 178.
    M. Tifieneau and H. Dorlencourt, C. R. Acad. Sci., Paris 143, 1242–1249 (1906).Google Scholar
  179. 179.
    B. Akermark and Jan-E. Backvall, Tetrahedron Lett. 10, 819–822 (1975).Google Scholar
  180. 180.
    Stenven G, Hentges and K. B. Sharpless, J.Org. Chem. 45, 2257–2259 (1980).Google Scholar
  181. 181.
    K. B. Sharpless, A. O. Chong, and K. Oshima. J. Org. Chem.41, 177–179 (1976).Google Scholar
  182. 182.
    E. Herranz, S. A. Biller, and K. B. Sharpless, J. Am. Chem. Soc. 100.3596–3598 (1978).Google Scholar
  183. 183.
    Eugenio Herranz and K. B. Sharpless, J. Org. Chem. 45, 2710–2713 (1980).Google Scholar
  184. 184.
    E. Herranz and K. B. Sharpless, J. Org. Chem. 43, 2544–2548 (1978).Google Scholar
  185. 185.
    Jan-E. Backvall, K. Oshima, R. E. Palermo, and K. B. Sharpless, J. Org. Chem. 44, 1953–1957 (1979).Google Scholar
  186. 186.
    L. F. Fieser and M. Fieser, in Reagents for Organic Synthesis, Vol. 1, pp. 475–476 and 759–764, Wiley, New York, 1967.Google Scholar
  187. 187.
    A. O. Chang, K. Oshima, and K. B. Sharpless, J. Am. Chem. Soc. 99, 3420–3426 (1977).Google Scholar
  188. 188.
    D. Saika and D. Swern, J. Org. Chem. 33, 4548–550 (1968).Google Scholar
  189. 189.
    N. A. Milas, U.S. Patent No. 2347, 358 (1944).Google Scholar
  190. 190.
    M. Ohno and S. Torimitsu, Tetrahedron Lett. 33, 2259–2262 (1964).Google Scholar
  191. 191.
    J. G. Murphy, J. Medicin Chem.9(1), 157 (1966).Google Scholar
  192. 192.
    R. Criegee, W. Horauf, and W. Schellenberg, Chem. Ber. 86, 126–132, (1953).Google Scholar
  193. 193.
    J. F. Easthan, G. B. Miles, and C. A. Krauth, J. Am. Chem. Soc. 81, 3114–3120 (1959).Google Scholar
  194. 194.
    T. Kubota, K. Yoshida, and F. Wanatake, Chem. Pharm. Bull. (Jpn) s 14, 1426–1429 (1966).Google Scholar
  195. 195.
    T. Kubota, K. Yoshida, F. Hayashi, and K. Takeda, Chem. Pharm. Bull (Jpn) 13, 50–52 (1965).Google Scholar
  196. 196.
    D. N. Jones, J. R. Lewis, C. W. Shopee, and G. H. R. Summers, J. Chem. Soc. 1955, 2876–2887.Google Scholar
  197. 197.
    G. M. Whitham and J. A. R. Wickramasinghe, J. Chem. Soc. 1964, 1655–1662.Google Scholar
  198. 198.
    C. W. Davey, E. L. Mc. Ginnis, J. M. Mc. Keown, G. D. Meakins, M. W. Pemberton, and R. N. Young, J. Chem. Soc. 1968, 2674–2682.Google Scholar
  199. 199.
    M. Nussim and Y. Mazur, Tetrahedron24, 5337–5359 (1968).Google Scholar
  200. 200.
    E. T. J. Bathurst, J. M. Coxon, and M. P. Hartshorm, Aust. J. Chem.27, 1505–1513 (1974).Google Scholar
  201. 201.
    D. Baldwin, J. R. Hanson, and A. M. Holton, J. Chem. Soc. PerkinI 1973, 2687–2691 (Part III).Google Scholar
  202. 202.
    A. R. Devis and G. H. R. Summers, J. Chem. Soc. (C) 1966, 1012–1014.Google Scholar
  203. 203.
    James R. Bull and Jan Floor, J. Chem. Soc. PerkinI 1977, 724–730.Google Scholar
  204. 204.
    J. R. Bull and J. A. Harpur, S. Afr. J. Chem.3, 175–180 (1977).Google Scholar
  205. 205.
    N. Sussela, Z. Anal. Chem. 145, 175 (1955).Google Scholar
  206. 206.
    F. A. Solymosi, Megy. Kern. Foly62, 318–319 (1957).Google Scholar
  207. 207.
    R. Kalvoda, J. Electroanal. Chem. U, 53–60 (1970).Google Scholar
  208. 208.
    A. Rashid, P. Straka, and R. Kalvoda, J. Electroanal. Chem.29, 383–390 (1971).Google Scholar
  209. 209.
    M. P. Singh, H. S. Singh, M. C. Gangawar, P. Thakur, and A. K. Singh, Proc. Ind. Natl. Sci. Acad. 41, 178–187(1975).Google Scholar
  210. 210.
    R. Kalvoda and E. Trzicka, J. Electro. Anal. Chem.IA. 515–519 (1972).Google Scholar
  211. 211.
    S. Zafar Ali, A. Trojanek, and R. Kalvoda, J. Electroanal. Chem.52, 85–91 (1974).Google Scholar
  212. 212.
    S. Kumar and P. C. Mathur, Polish J. Chem. 53, 2061–2067 (1979).Google Scholar
  213. 213.
    V. F. Romonov, G. A. Konishevskaya, and K. B. Yatsimirskii, Zh. Neorg. Khim.17, 3300–3305 (1972).Google Scholar
  214. 214.
    V. F. Romonov and G. A. Konishevskaya, Ukr. Khim. Zh. fRuss. 40(7).689–695 (1974).Google Scholar
  215. 215.
    U. S. Mehrotra and S. P. Mushran, Can. J. Chem.48, 1148–1150 (1970).Google Scholar
  216. 216.
    S. K. Upadhyaya and M. C. Agrawal, Ind. J. Chem. 16A, 39–2 (1978).Google Scholar
  217. 217.
    P. S. Radhakrishnamurti and B. Sahu, Ind. J. Chem. 17A, 93–95 (1979).Google Scholar
  218. 218.
    S. K. Upadhyaya and M. C Agrawal, Ind. J. Chem. 18A, 34–36 (1979).Google Scholar
  219. 219.
    S. K. Upadhyaya and M. C. Agrawal, Ind. J. Chem. 15A, 709–712 (1977).Google Scholar
  220. 220.
    S. C. Pati and Y. Sriramulu, Ind. J. Chem. 16A, 74–76 (1978).Google Scholar
  221. 221.
    G. P. Panigrahi, S. N. Mohapatro, and P. K. Misra, Ind. J. Chem. 16A, 1095–1097 (1978).Google Scholar
  222. 222.
    G. P. Panigrahi and P. K. Misro, Ind. J. Chem. I5A, 1066–1069 (1977).Google Scholar
  223. 223.
    Ram Sanehi, M. C. Agrawal, and S. P. Mushran, Ind. J. Chem.12, 311–312 (1974).Google Scholar
  224. 224.
    J. F. Bagli, T. Bogri, R. Deghenghi, and K. Wiesner, Tetrahedron Lett.5, 465–470 (1966).Google Scholar
  225. 225.
    J. F. Bagli and T. Bogri, Tetrahedron Lett.1, 5–10 (1967).Google Scholar
  226. J. F. Bagli and T. Bogri, Tetrahedron Lett.36, 3815–3817 (1972).Google Scholar
  227. 226.
    L. J. Chinn and K. W. Salamon, J. Org. Chem.44, 168–172 (1979).Google Scholar
  228. 227.
    R. Robinson, J. Chem. Soc. 1938, 1390–1397.Google Scholar
  229. 228.
    A. Koebner and R. Robinson, J. Chem. Soc. 1938, 1994–1997.Google Scholar
  230. 229.
    Achille Barco, Simonetta Benetti, and Gian Piere Pollini, J. Org. Chem.44, 1734–1736 (1979).Google Scholar
  231. 230.
    G. Bolliger and J. M. Muchowski, Tetrahedron Lett.34, 2931–2934 (1975).Google Scholar
  232. 231.
    P. A. Zoretic, B. Branehaud, and N. D. Sinha, J. Org. Chem.42, 3201–3203 (1977).Google Scholar
  233. 232.
    A. Barco, S. Benetti, G. P. Pollini, B. Veronesi, P. G. Baraldi, M. Guarnery, and C. B. Vicentini. Synth. Commun.8, 219 (1978).Google Scholar
  234. 233.
    S. Moncada, A. G. Herman, E. A. Higgs, and J. R. Vane, Thromb Res. 11, 323–325 (1977).Google Scholar
  235. 234.
    J. M. Armstrong, G. J. Dusting, S. Moneada, and J. R. Vane, Circ. Res.43, 112–114 (1978).Google Scholar
  236. 235.
    D. R. Morton, Jr., and F. C. Brokaw, J. Org. Chem.44, 2880–2887 (1979).Google Scholar
  237. 236.
    E. Ghera and Y. B. David, J. Chem. Soc. Chem. Commun 1978, 480481.Google Scholar
  238. 237.
    N. K. Kochetkov, A. Khoriin, and O. S. Chizhov, Zh. Obschchei Khim.31, 3454 (1961).Google Scholar
  239. 238.
    N. K. Kochetkov, A. Khoriin, O. S. Chizhov, and V. I. Sheichenko, Tetrahedron Lett.20. 730–734 (1961).Google Scholar
  240. 239.
    S. David, A. Lubineau, and J.-M. Vatele, J. Chem. Soc. Chem. Commun. 1978, 535–537.Google Scholar
  241. 240.
    S. C. Agarawal, V. Duuren, and L. Benjamin, J. Org. Chem.42, 2730–2733 (1977).Google Scholar
  242. 241.
    S. Current and K. B. Sharpless, Tetrahedron Lett. 1978, 5075–5078.Google Scholar
  243. 242.
    T. Hake, Lab. Invest.14, 470–474 (1208–1212) (1965).Google Scholar
  244. 243.
    L. G. Marzilli, Prog. Inorg. Chem.23, 327–333 (1977).Google Scholar
  245. 244.
    D. W. Ockenden and K. Schofield. J. Chem. Soc. 1953, 612–618.Google Scholar
  246. 245.
    P. Maupin-Szamier and T. D. Pollard, J. Cell. Biol. 77, 837–852 (1978).Google Scholar
  247. 246.
    J. S. Deetz and E. J. Behrman, J. Org. Chem.45, 135–140 (1980).Google Scholar
  248. 247.
    D. Hopwood, Histochemie18, 250–260 (1969).Google Scholar
  249. 248.
    K. R. Porter and F. Kallman, Exp. Cell Res.4, 127–141 (1953).Google Scholar
  250. 249.
    J. C. Lisak, H. W. Kaufman, P. Maupin-Szamier, and T. D. Pollard, Biol. Bull. 151, 418 (1976).Google Scholar
  251. 250.
    H. Ford, C. H. Chang, and E. J. Behrman, J. Am. Chem. Soc. 101, 2251–2252 (1979).Google Scholar
  252. 251.
    J. S. Deetz and E. J. Behrman, Int. J. Peptide Protein. Res.17, 495–500 (1981).Google Scholar
  253. 252.
    J. S. Mayell, Ind. Eng. Chem.7, 129 (1968).Google Scholar
  254. 253.
    F. R. Brunot J. Ind. Hug.15, 136 (1933).Google Scholar
  255. 254.
    D. Hunter. J. Pharm. Pharmacol.5, 149 (1953).Google Scholar
  256. 255.
    D. Hurtlr, Brit. Med. Bull.7, 11, (1950).Google Scholar
  257. 256.
    A. I. G. McLaughlim, R. Milton, and K. M. A. Perry, Brit. J. Ind. Med.3, 183 (1946).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Hari Shankar Singh
    • 1
  1. 1.Department of ChemistryUniversity of AllahabadAllahabadIndia

Personalised recommendations