Skip to main content

Collective Properties of Biological Systems

Solitons and Coherent Electric Waves in a Quantum Field Theoretical Approach

  • Chapter

Abstract

We present a dynamical scheme for biological systems. We use methods and techniques of quantum field theory since our analysis is at a microscopic molecular level. Davydov solitons on biomolecular chains and coherent electric dipole waves are described as collective dynamical modes. Electric polarization waves predicted by Fröhlich are identified with the Goldstone massless modes of the theory with spontaneous breakdown of the dipole-rotational symmetry. Self-organization, dissipativity, and stability of biological systems appear as observable manifestations of the microscopic quantum dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Fröhlich, “The Biological Effects of Microwaves and Related Questions,” Adv. Electron. Electron Phys. 53, 85–152 (1980); H. Fröhlich, “Long-Range Coherence in Biological Systems,” Riv. Nuovo Cimento 7, 399–418 (1977).

    Article  Google Scholar 

  2. A. S. Davydov, “Solitons in Molecular Systems,” Phys. Scr. 20, 387–394 (1979).

    Article  CAS  Google Scholar 

  3. A. S. Davydov, Biology and Quantum Mechanics, Pergamon, Oxford (1982).

    Google Scholar 

  4. E. Del Giudice, S. Doglia, M. Milani, and G. Vitiello, “Spontaneous Symmetry Breakdown and Boson Condensation in Biology,” Phys. Lett. A 95, 508–510 (1983); E. Del Giudice, S. Doglia, M. Milani, and G. Vitiello, “A Quantum Field Theoretical Approach to the Collective Behaviour of Biological Systems,” Nucl. Phys. B 251 [FS 13], 375–400 (1985).

    Article  Google Scholar 

  5. G. Vitiello, E. Del Giudice, S. Doglia, and M. Milani, “Boson Condensation in Biological Systems,” Report to the International Conference on Nonlinear Electrodynamics in Biological Systems, Lorna Linda, California, June 1983; E. Del Giudice, S. Doglia, M. Milani, and G. Vitiello, Solitons and Self-Organization in Biological Systems,” in Proceedings of the Second International Workshop on Nonlinear and Turbulent Processes, Kiev (USSR), October 1983, Gordon and Breach, in press.

    Google Scholar 

  6. J. Goldstone, “Field Theories with Superconductor Solutions,” Nuovo Cimento 19, 154–164 (1961); J. Goldstone, A. Salam, and S. Weinberg, “Broken Symmetries,” Phys. Rev. 127, 965–970 (1962).

    Article  Google Scholar 

  7. R. Paul, “Production of Coherent States in Biological Systems,” Phys. Lett. A 96, 263–268 (1983).

    Article  Google Scholar 

  8. I. Prigogine and G. Nicolis, Self-Organization in Non-equilibrium Systems, from Dissipative Structures to Order Through Fluctuations, Wiley, New York (1977).

    Google Scholar 

  9. S. Celaschi and S. Mascarenhas, Biophys. J. 20, 273–278 (1977).

    Article  CAS  Google Scholar 

  10. J. B. Hasted, H. M. Millany, and D. Rosen, J. Chem. Soc. Faraday Trans. 77, 2289–2297 (1981).

    Article  CAS  Google Scholar 

  11. S. Mascarenhas, personal communication (August 1982).

    Google Scholar 

  12. H. Matsumoto, M. Tachiki, and H. Umezawa, Thermo-field Dynamics and Condensed States, North-Holland, Amsterdam (1982).

    Google Scholar 

  13. H. Matsumoto, P. Sodano, and H. Umezawa, “Extended Objects in Quantum Field Theory and Soliton Solutions,” Phys. Rev. D 19, 511–516 (1979).

    Article  CAS  Google Scholar 

  14. L. Mercaldo, I. Rabuffo, and G. Vitiello, “Canonical Transformations in Quantum Field Theory and Solitons,” Nucl Phys. 188B, 193–204 (1981).

    Article  Google Scholar 

  15. H. Umezawa, “Dynamical Rearrangement of Symmetries,” Nuovo Cimento 40, 450–475 (1965); L. Leplae, R. N. Sen, and H. Umezawa, “Asymmetric Ground States in Invariant Many-Body Theories,” Nuovo Cimento 49B, 1–31 (1967). H. Umezawa, “Self-consistent Quantum Field Theory and Symmetry Breaking,” in Renormalization and Invariance in Quantum Field Theory ( E. R. Caianiello, ed.), Plenum Press, New York (1974), pp. 275–328.

    CAS  Google Scholar 

  16. A. S. Davydov and V. I. Kislukha, “Solitons in One-Dimensional Molecular Chains,” Sov. Phys. JETP 44, 571–575 (1976).

    Google Scholar 

  17. A. S. Davydov, “Energy Transfer Along α-Helical Proteins,” in Structure and Dynamics: Nucleic Acids and Proteins (F. Clementi and R. H. Sarma, eds.), New York (1983), pp. 377–387 Adenine.

    Google Scholar 

  18. A. S. Davydov, “Solitons in Molecular Systems,”Preprint, Kiev ITP-83-115E (September 1983).

    Google Scholar 

  19. E. Del Giudice, S. Doglia, and M. Milani, “A Collective Dynamics in Metabolically Active Cells, Phys. Scr. 26, 232–238 (1982).

    Article  Google Scholar 

  20. E. Del Giudice, S. Doglia, and M. Milani, “Self-focusing of Fröhlich Waves and Cytoskeleton Dynamics,” Phys. Lett. 90A, 104-106 (1982); E. Del Giudice, S. Doglia, and M. Milani, “Actin Polymerization in Cell Cytoplasm” in The Application of Laser Light Scattering to the Study of Biological Motion (J. C. Earnshaw and M. W. Steer, eds.), Plenum Press, New York (1983); pp. 493-497; E. Del Giudice, S. Doglia, and M. Milani, “Self-focusing and Ponderomotive Forces of Coherent Electric Waves: A Mechanism for Cytoskeleton Formation and Dynamics,” in Coherent Excitations of Biological Systems (H. Fröhlich and F. Kremer, eds.), Springer, Berlin (1983), pp. 124–127; E. Del Giudice, S. Doglia, and M. Milani, “Order and Structures in Living Systems,” Report to the International Conference on Nonlinear Electrodynamics in Biological Systems, Lorna Linda, California (USA) June 1983.

    Google Scholar 

  21. H. Matsumoto, H. Umezawa, G. Vitiello, and J. K. Wyly, “Spontaneous Breakdown of a Non-Abelian Symmetry,” Phys. Rev. D 9, 2806–2813 (1974).

    Article  Google Scholar 

  22. M. N. Shah, H. Umezawa, and G. Vitiello, “Relation Among Spin Operators and Magnons,” Phys. Rev. B 10, 4724–4736 (1974).

    Article  Google Scholar 

  23. C. De Concini and G. Vitiello, “Spontaneous Breakdown of Symmetry and Group Contractions,” Nucl. Phys. 116B, 141–156 (1976). C. De Concini and G. Vitiello, “Relation Between Projective Geometry and Group Contraction in Spontaneously Broken Symmetries,” Phys. Lett. 70B, 355–357 (1977).

    Article  Google Scholar 

  24. F. J. Dyson, “General Theory of Spin Wave Interactions,” Phys. Rev. 102, 1217–1230 (1956).

    Article  Google Scholar 

  25. S. L. Adler, “Consistency Conditions on Strong Interaction Implied by a PCA Vector Current. I,” Phys. Rev. 137B, 1022–1033 (1965). S. L. Adler, “Consistency Conditions on Strong Interaction Implied by a PCA Vector Current. II,” Phys. Rev. 139B, 1638–1643 (1965).

    Article  Google Scholar 

  26. M. N. Shah and G. Vitiello, “Self-consistent formulation of itinerant Electron Ferromagnet,” Nuovo Cimento 30B, 21–42 (1975).

    Article  Google Scholar 

  27. A. S. Davydov and A. V. Zolotariuk, “Electrons and Excitons in Nonlinear Molecular Chains,” Phys. Scr. 28, 249–256 (1983).

    Article  CAS  Google Scholar 

  28. G. Careri, U. Buontempo, F. Carta, E. Gratton, and A. C. Scott, “Infrared Absorption in Acetanilide by Solitons,” Phys. Rev. Lett. 51, 304–307 (1983).

    Article  CAS  Google Scholar 

  29. N. A. Nevskaia and Yu. N. Chirgadze, “Infrared Spectra and Resonance Interactions of amide-I and amide-II vibrations of a-helix,” Biopolymers 15, 637–648 (1976).

    Article  Google Scholar 

  30. F. Drissler and R. M. MacFarlane, “Enhanced Anti-Stokes Raman Scattering from Living Cells of Chlorella Pyrenoidosa,” Phys. Lett. A69, 65–68 (1978); F. Drissler, “Discovery of Phase Transitions in Photosynthetic Systems,” 77A, 207–210 (1980).

    Google Scholar 

  31. E. Del Giudice, S. Doglia, and M. Milani, “Solitons in Biological Systems at Low Temperature,” Phys. Scr. 23, 307–312 (1981).

    Article  Google Scholar 

  32. A. C. Scott, “Dynamics of Davydov Solitons,” Phys. Rev. A 26, 578–593 (1982).

    Article  CAS  Google Scholar 

  33. S. W. Englander, N. R. Kallenbach, A. J. Heeger, J. A. Krumhanols, and S. Litwin, “Nature of the Open State in Long Polynucleotide Double Helices,” Proc. Natl. Acad. Sci. USA 77, 7222–7226 (1980).

    Article  CAS  Google Scholar 

  34. P. Jensen, M. V. Jaric, and K. H. Bennemann, “Soliton-like Processes during Right-Left Transition,” Phys. Lett. 95A, 204–208 (1983).

    Article  Google Scholar 

  35. P. Beaconsfield and E. Balanovski, “EM-induced B-DNA to A-DNA Transition: Signal Stimulating Conditions for DNA-Mediated Insulin Production and Cell Replication,” Phys. Lett. 100A, 172–174 (1984).

    Article  Google Scholar 

  36. S.C. Erfurth, E. J. Kier, and W. L. Peticolas, “Determination of the Backbone Structure of Nucleic Acids and Nucleic Acid Oligomers by Laser Raman Spectroscopy,” Proc. Natl. Acad. Sei. USA 69, 938–941 (1972).

    Article  CAS  Google Scholar 

  37. G. J. Thomas and K. A. Hartman, “Raman Studies of Nucleic Acids VIII. Estimation of RNA Secondary Structure from Raman Scattering by Phosphate-Group Vibrations,” Biochem. Biophys. Acta 312, 311–322 (1973).

    CAS  Google Scholar 

  38. R. Cooke and I. D. Kuntz, “The Properties of Water in Biological Systems,” Ann. Rev. Biophys. Bioeng. 3, 95–123 (1974).

    Article  CAS  Google Scholar 

  39. J. Clegg, “Intracellular Water, Metabolism and Cellular Architecture,” Collect. Phenom. 3, 289–312 (1981).

    Google Scholar 

  40. F. Franks, Water, A Comprehensive Treatise, Pergamon (1975).

    Google Scholar 

  41. N. D. Devyatkov, “Influence of Millimeter-Band Electromagnetic Radiation on Biological Objects,” Sov. Phys. Usp. 16, 568–569 (1974).

    Article  Google Scholar 

  42. S. J. Webb, “Nutrition and in Vivo Rotational Motion: A Microwave Study,” Int. J. Quantum Chem. Quantum Biol. Symp. No. 1, 245–251 (1974); S. J. Webb, “Genetic Continuity and Metabolic Regulation as Seen by the Effects of Various Microwave and Black Light Frequencies on these Phenomena,” Ann. N. Y. Acad. Sci. 247, 327–344 (1975).

    Google Scholar 

  43. W. Grundler, F. Keilmann, V. Putterlik, L. Santo, D. Strube, and I. Zimmermann, “Nonthermal Resonant Effects at 42-GH Microwaves on the Growth of Yeast Cultures,” in Coherent Excitations of Biological Systems ( H. Fröhlich and F. Kremer, eds.), Springer, Berlin (1983), pp. 21–37.

    Google Scholar 

  44. F. Hillenkamp, “Interaction between Laser Radiation and Biological Systems,” in Lasers in Biology and Medicine ( E. F. Hillenkamp, R. Pratesi, and C. A. Sacchi, eds.), Plenum, New York (1979), pp. 37–68.

    Google Scholar 

  45. T. J. Karu, O. A. Tiphlova, V. S. Letokhov, and Y. V. Lobko, “Stimulation of E. Coli Growth by Laser and Incoherent Red Light,” Nuovo Cimento 2D, 1138–1149 (1983).

    Article  Google Scholar 

  46. H. Pohl, “Natural Oscillating Fields of Cells,” in Coherent Excitations in Biological Systems ( H. Fröhlich and F. Kremer, eds.), Springer, Berlin (1983), pp. 199–210.

    Google Scholar 

  47. A. H. Japary-Asl and C. W. Smith, “Biological Dielectrics in Electric and Magnetic Fields,” in 1983 Annual Report Conference on Electrical Insulation and Dielectric Phenomena.

    Google Scholar 

  48. K. H. Li, F. A. Popp, W. Nagl, and H. Klima, “Indications of Optical Coherence in Biological Systems and Its Possible Significance,” in Coherent Excitations in Biological Systems ( H. Fröhlich and F. Kremer, eds.), Springer, Berlin (1983), pp. 117–122.

    Google Scholar 

  49. S. J. Webb, “Laser Raman Spectroscopy of Living Cells,” Phys. Rep. 60, 201–224 (1980).

    Article  CAS  Google Scholar 

  50. E. Del Giudice, S. Doglia, M. Milani, and M. P. Fontana, “Raman Spectroscopy and Order in Biological Systems,” Cell Biophys. 6, 117–129 (1984).

    Google Scholar 

  51. E. Del Giudice, S. Doglia, M. Milani, and S. J. Webb, “A Time Consistent Feature as Seen in the Raman spectra of Metabolically Active Cells,” Phys. Lett. 91A, 257–260 (1982).

    Article  Google Scholar 

  52. E. Del Giudice, S. Doglia, M. Milani, and S. J. Webb, “In vivo Ordered Structures as Seen by Laser Raman Spectroscopy,” in Proceedings of the 2nd International Seminar on the Living State, Bhopal (India) (1983).

    Google Scholar 

  53. S. Rowlands, L. S. Sewchand, and E. G. Enns, “Further Evidence for a Fröhlich Interaction of Erythrocytes,” Phys. Lett. 87A, 256–260 (1982); S. Rowlands, “Coherent Excitations in Blood,” in Coherent Excitations in Biological System ( H. Fröhlich and F. Kremer, eds.), Springer, Berlin (1983), pp. 145–161.

    Google Scholar 

  54. R. Paul, R. Chatterjee, J. A. Tuszynski, and O. G. Fritz, “Theory of Long-Range Coherence in Biological Systems. I. The Anomalous Behaviour of Human Erythrocytes,” J. Theor. Biol. 104, 169–185 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Del Giudice, E., Doglia, S., Milani, M., Vitiello, G. (1986). Collective Properties of Biological Systems. In: Gutmann, F., Keyzer, H. (eds) Modern Bioelectrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2105-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2105-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9246-3

  • Online ISBN: 978-1-4613-2105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics