Skip to main content

Elementary Analysis of Chemical Electric Field Effects in Biological Macromolecules

I. Thermodynamic Foundations

  • Chapter
Modern Bioelectrochemistry

Abstract

The analysis of bioelectric phenomena requires knowledge of the thermodynamics and kinetics of electric field effects on chemical reactions. Chemical relaxation kinetics in high electric fields is the method of choice in order to imitate the high electric fields operative in living entities like membranes or close to fixed charges like those in proteins and nucleic acids. The present account covers elementary aspects of chemical electric field effects. Part I deals with the thermodynamic foundations of the analytical formalism required for a rigorous treatment of chemical field effects. Part II utilizes this frame of concepts and provides kinetic information as to how to investigate chemical and orientational contributions to structural changes in macromolecules and membrane organizations. The basic formalism established so far for isolated macromolecular systems may be extended to treat more complex bioelectric phenomena on the level of membranes and of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. S. Cole, Membranes, Ions and Impulses, University of California Press (1968).

    Google Scholar 

  2. I. Tasaki, Physiology and Electrochemistry of Nerve Fibers, Academic, New York (1982).

    Google Scholar 

  3. D. Nachmansohn and E. Neumann, Chemical and Molecular Basis of Nerve Activity, Rev., Academic, New York (1975).

    Google Scholar 

  4. P. I. Dorogi and E. Neumann, Proc. Natl. Sci. USA 77, 6582–6586 (1980).

    Article  CAS  Google Scholar 

  5. H. T. Witt, E. Scholdder, and P. Gräbert, FEBS Lett. 69, 272–276 (1976).

    Article  CAS  Google Scholar 

  6. E. Scholdder, M. Rögner, and H. T. Witt, FEBS Lett. 138, 13–18 (1982).

    Article  Google Scholar 

  7. E. Neumann, in Topic of Bioelectrochemistry and Bioenergetics ( G. Milasso, ed.) Wiley, New York (1981), Vol. 4, pp. 113–160.

    Google Scholar 

  8. E. Neumann, in Ions in Macromolecular and Biological Systems ( D. H. Everett and B. Vincent, eds.), Scientechnica, Bristol (1978), pp. 170–191.

    Google Scholar 

  9. A. Katchlsky and E. Neumann, Int. J. Neurosci. 3, 175–182 (1972).

    Article  Google Scholar 

  10. K. Tsuji and E. Neumann, FEBS Lett. 128, 265–268 (1981).

    Article  CAS  Google Scholar 

  11. K. Tsuji and E. Neumann, FEBS Lett. 128, 265–268 (1981).

    Article  CAS  Google Scholar 

  12. D. Schallreuter, Ph.D. thesis, Konstanz and Martinsried (1982); E. Neumann, K. Tsuji, and D. Schallreuter in Biological Structures and Coupled Flows (A. Oplatka and M. Balaban, eds.), Academic, New York (1983), pp. 135–138.

    Google Scholar 

  13. M. Eigen and L. C. M. DeMaeyer, Tech. Org. Chem. 8 (2), 895–1054 (1963).

    CAS  Google Scholar 

  14. K. Bergmann, M. Eigen, and L. C. M. DeMaeyer, Ber. Bunsenges. Phys. Chem. 67, 819–826 (1963).

    CAS  Google Scholar 

  15. G. Schwarz, J. Phys. Chem. 71, 4021–4030 (1967).

    Article  CAS  Google Scholar 

  16. L. Onsager, J. Chem. Phys. 2, 599–615 (1934).

    Article  CAS  Google Scholar 

  17. H.-J. Nolte, T. L. Rosenberry, and E. Neumann, Biochemistry 19, 3705–3711 (1980).

    Article  CAS  Google Scholar 

  18. A. Enokida, T. Okubo, and N. Ise, Macromolecules 13, 49–53 (1980).

    Article  CAS  Google Scholar 

  19. E. Neumann and H. J. Nolte, Bioelectrochem. Bioenerg. 8, 89–101 (1981).

    Article  CAS  Google Scholar 

  20. C. T. O’Konski and A. J. Haltner, J. Am. Chem. Soc. 79, 5634–5649 (1957).

    Google Scholar 

  21. M. Tricot and C. Houssier, in Polyelectrolytes ( K. C. Frisch, D. Klempner, and A. V. Patsis, eds.), pp. 43–90, Technomic, Westport (1976).

    Google Scholar 

  22. E. Fredericq and C. Houssier, Electric Dichroism and Electric Birefringence, Clarendon, Oxford (1973).

    Google Scholar 

  23. M. Eigen and G. Schwarz, Z. Phys. Chem. N.F. 4, 380–385 (1955).

    Article  CAS  Google Scholar 

  24. M. Eigen and G. Schwarz, J. Coli. Sci. 12, 181–194 (1957).

    Article  CAS  Google Scholar 

  25. M. Eigen and G. Schwarz, in Electrolytes ( B. Pesce, ed.), Pergamon, Oxford (1962), pp. 309–335.

    Google Scholar 

  26. C. T. O’Konski and N. C. Stellwagen, Biophys. J. 5, 607–613 (1965).

    Article  Google Scholar 

  27. G. Schwarz and J. Seelig, Biopolymers 6, 1263–1277 (1968).

    Article  CAS  Google Scholar 

  28. E. Neumann and A. Katchalsky, Proc. Natl. Acad. Sci. USA 69, 993–997 (1972).

    Article  CAS  Google Scholar 

  29. E. Neumann, Angew. Chem. Intern. Ed. 12, 356–369 (1973).

    Google Scholar 

  30. K. Kikuchi and K. Yoshioka, Biopolymers 12, 2667–2679 (1973).

    Article  CAS  Google Scholar 

  31. T. Yasunaga, T. Sano, K. Takahashi, H. Takenaka, and S. Ito, Chem. Lett. (Japan), 405–408 (1973).

    Google Scholar 

  32. A. Revzin and E. Neumann, Biophys. Chem. 2, 144–150 (1974).

    Article  CAS  Google Scholar 

  33. D. Pörschke, Nucl. Acid. Res. 1, 1601–1618 (1974).

    Article  Google Scholar 

  34. D. Pörschke, Biopolymers 15, 1917–1928 (1976).

    Article  Google Scholar 

  35. K. Kikuchi and K. Yoshioka, Biopolymers 15, 583–587 (1976).

    Article  CAS  Google Scholar 

  36. E. Neumann and K. Rosenheck, J. Membrane Biol. 10, 279–290 (1972).

    Article  CAS  Google Scholar 

  37. U. Zimmermann, P. Scheurich, G. Pilwat, and R. Benz, Angew. Chem. 93, 332–351 (1981).

    Article  CAS  Google Scholar 

  38. J. Teissie and T. Y. Tsong, Biochemistry 20, 1548–1554 (1981).

    Article  CAS  Google Scholar 

  39. E. A. Guggenheim, Thermodynamics, 5th rev. ed., North-Holland, Amsterdam (1967); J. Phys. Chem. 33, 842 (1929).

    Google Scholar 

  40. J. G. Kirkwood and I. Oppenheim, Chemical Thermodynamics, McGraw-Hill, New York (1961).

    Google Scholar 

  41. K. Tsuji and E. Neumann, Biophys. Chem. 17, 153–163 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Neumann, E. (1986). Elementary Analysis of Chemical Electric Field Effects in Biological Macromolecules. In: Gutmann, F., Keyzer, H. (eds) Modern Bioelectrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2105-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2105-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9246-3

  • Online ISBN: 978-1-4613-2105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics