Skip to main content

Electrostatic Modulation of Electromagnetically Induced Nonthermal Responses in Biological Membranes

  • Chapter
Modern Bioelectrochemistry
  • 210 Accesses

Abstract

A discussion of possible nonthermal responses of biological membranes to very low intensity electromagnetic fields is presented. The role of membrane surface charge in mediating such responses is examined. In particular, means whereby electrostatic surface properties can be systematically altered in order to determine their role in influencing the membrane’s response to weak fields is discussed. The very important role played by the membrane’s electrochemical environment in determining the charge state of the membrane per se as well in determining the distribution of various ionic species in this environment is discussed in the context of the system (membrane and ambient electrolyte) responding to weak external perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Fröhlich and F. Kremer, Coherent Excitations in Biological Systems, Springer-Verlag, New York (1983).

    Google Scholar 

  2. B. Katz, Nerve, Muscle, and Synapse, McGraw-Hill, New York (1966).

    Google Scholar 

  3. I. Newton, Opticks, Dover, New York (1952).

    Google Scholar 

  4. I. D. Harmon and E. R. Lewis, “Neural Modeling,” Physiol. Rev. 46, 513–591 (1966).

    CAS  Google Scholar 

  5. A. I. Hodgkin, The Conduction of the Nervous Impulse, Liverpool University Press, Liverpool (1964).

    Google Scholar 

  6. H. Fröhlich, “What are Nonthermal Electric Biological Effects?” Bioelectromagnetics 3, 45–46 (1982).

    Article  Google Scholar 

  7. C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley, New York (1973).

    Google Scholar 

  8. H. Eibl and P. Woolley, “Electrostatic Interactions at Charged Lipid Membranes. Hydrogen Bonds in Lipid Membrane Surfaces,” Biophys. Chem. 10, 261–271 (1979).

    Article  CAS  Google Scholar 

  9. K. Toko and K. Yamafuji, “Stabilization Effect of Protons and Divalent Cations on Membrane Structures of Lipids,” Biophys. Chem. 14, 11–23 (1981).

    Article  CAS  Google Scholar 

  10. T. Hill, “Electric Fields and the Cooperativity of Biological Membranes,” Proc. Natl. Acad. Sci. USA 58, 111–114 (1967).

    Article  CAS  Google Scholar 

  11. J. Changeux, J. Thiery, Y. Tung, and C. Kittel, “On the Cooperativity of Biological Membranes,” Proc. Natl. Acad. Sci. USA 57, 335–344 (1967).

    Article  CAS  Google Scholar 

  12. R. Blumen thai, J. Changeux, and R. Lefever, “Membrane Excitability and Dissipative Instabilities,” J. Membr. Biol. 2, 351–374 (1970).

    Article  Google Scholar 

  13. H. Fröhlich, “The Biological Effects of Microwaves and Related Quetions,” Adv. Electron. Electron Phys. 53, 85–152 (1980).

    Article  Google Scholar 

  14. H. Fröhlich, “Bose Condensation of Strongly Excited Longitudinal Electric Modes,” Phys. Lett. 26A (9), 402–403 (1968).

    Article  Google Scholar 

  15. H. Fröhlich, “Long-Range Coherence and Energy Storage in Biological Systems,” Int. J. Quant. Chem. 2, 641–649 (1968).

    Article  Google Scholar 

  16. H. Fröhlich, in Theoretical Physics and Biology ( M. Marois, ed.), Wiley, New York (1969), pp. 13–22.

    Google Scholar 

  17. W. Aimers, “Gating Currents and Charge Movements in Excitable Membranes,” Rev. Physiol. Biochem. Pharmacol. 82, 96–190 (1978).

    Article  Google Scholar 

  18. F. Kaiser, “Boltzmann Equation Approach to Fröhlich’s Vibrational Model of Bose Condensation-Like Excitations of Coherent Modes in Biological Systems,” Z. Naturforsch. 34a, 134–146.

    Google Scholar 

  19. D. Bhaumik, K. Bhaumik, B. Dutta-Roy, and M. Engineer, “A Microscopic Approach to the Fröhlich Model of Bose Condensation of Phonons in Biological Systems,” Phys. Lett. 59A, 77–80 (1976).

    Article  Google Scholar 

  20. T. M. Wu and S. Austin, “Bose Condensation in Biosystems,” Phys. Lett. 64A, 151–152 (1977).

    Article  Google Scholar 

  21. T. M. Wu and S. Austin, “Cooperative Behavior in Biological Systems,” Phys. Lett. 65A, 74–76 (1978).

    Article  Google Scholar 

  22. F. Kaiser, “Coherent Oscillations in Biological Systems. I. Bifurcation Phenomena and Phase Transitions in an Enzyme-Substrate Reaction with Ferroelectric Behavior,” Z. Naturforsch. 33a, 294–304 (1978).

    Google Scholar 

  23. F. Kaiser, “Coherent Oscillations in Biological Systems. II. Limit Cycle Collapse and the Onset of Travelling Waves in Fröhlich’s Brain Wave Model,” Z. Naturforsch. 33a, 418–431 (1978).

    Google Scholar 

  24. F. Kaiser, in Biological Effects of Nonionizing Radiation (K. Illinger, ed.), American Chemical Society Symposium Series 157, Washington, D.C. (1981), pp. 213–241.

    Google Scholar 

  25. H. Fröhlich, “Long-Range Coherence in Biological Systems,” Riv. Nuovo Cimento 7 (3), 399–418 (1977).

    Article  Google Scholar 

  26. F. Kaiser, “Limit Cycle Model for Brain Waves,” Biol. Cybernetics 27, 155–163 (1977).

    Article  CAS  Google Scholar 

  27. D. Bhaumik, K. Bhaumik, B. Dutta-Roy, and M. Engineer, “Polar Modes with Elastic Restoring Forces, Bose Condensation, and the Possibility of a Metastable Ferroelectric State,” Phys. Lett. 62A, 197–200 (1977).

    Article  Google Scholar 

  28. I. Grodsky, “Possible Physical Substrates for the Interaction of Electromagnetic Fields with Biological Membranes,” Ann. N. Y. Acad. Sci. 247, 117–124 (1975).

    Article  CAS  Google Scholar 

  29. I. Grodsky, “Neuronal Membrane: A Physical Synthesis,” Math. Biosci. 28, 191–219 (1976).

    Article  CAS  Google Scholar 

  30. I. Grodsky, “Biophysical Bases of Tissue Interactions,” Neurosci. Res. Program Bull. 15, 72–80 (1977).

    CAS  Google Scholar 

  31. K. Huang, Statistical Mechanics, Wiley, New York (1963).

    Google Scholar 

  32. D. Van Lamsweerde-Gallez and A. Meessen, “The Role of Proteins in a Dipole Model for Steady-State Ionic Transport Through Biological Membranes,” J. Membr. Biol. 23, 103–137 (1975).

    Article  Google Scholar 

  33. A. Lawrence and W. Adey, “Nonlinear Wave Mechanisms in Interactions Between Excitable Tissue and Electromagnetic Fields,” Neurol. Res. 4 (1/2), 115–152 (1982).

    CAS  Google Scholar 

  34. A. Davydov, “Solitons in Molecular Systems,” Phys. Scr. 20, 387–294 (1979).

    Article  CAS  Google Scholar 

  35. S. Vaccaro and H. Green, “Ionic Processes in Excitable Membranes,” J. Theor. Biol. 81, 771–802 (1979).

    Article  CAS  Google Scholar 

  36. T. Triffet and H. Green, “Information and Energy Flow in a Simple System,” J. Theor. Biol 86, 3–44 (1980).

    Article  CAS  Google Scholar 

  37. C. Cain, “A Theoretical Basis for Microwave and RF Field Effects on Excitable Cellular Membranes,” IEEE Trans. Microwave Theory Tech. 28 (2), 142–147 (1980).

    Article  Google Scholar 

  38. C. Cain, “Biological Effects of Oscillating Electric Fields: Role of Voltage Sensitive Ion Channels,” Bioelectromagnetics 2, 23–32 (1981).

    Article  CAS  Google Scholar 

  39. C. Cain, in Biological Effects of Nonionizing Radiation (K. Illinger, ed.), American Chemical Society Symposium Series 157, Washington, D.C. (1981), pp. 147–160.

    Chapter  Google Scholar 

  40. F. Barnes and C. Hu, “Model for Some Nonthermal Effects of Radio and Microwave Fields on Biological Membranes,” IEEE Trans. Microwave Theory Tech. 25, 742–746 (1977).

    Article  Google Scholar 

  41. F. Barnes and C. Hu, in Nonlinear Electromagnetics ( P. Uslenghi, ed.), Academic, New York (1980), pp. 391–426.

    Google Scholar 

  42. W. Pickard and F. Rosenbaum, “Biological Effects of Microwaves at the Membrane Level: Two Possible Athermal Electrophysical Mechanisms and a Proposed Experimental Test,” Math. Biosci. 39, 235–253 (1978).

    Article  Google Scholar 

  43. A. Nazarea, in Aeromedical Review: USAF Radiofrequency Radiation Bioeffects Research Program—A Review (J. C. Mitchell, ed.), Review 4–81, Brooks Air Force Base, San Antonio, Texas (1981).

    Google Scholar 

  44. C. Stevens, “Inferences About Membrane Properties from Electrical Noise Measurements,” Biophys. J. 12, 1028–1047 (1972).

    Article  CAS  Google Scholar 

  45. Y. Chen, “Differentiation of Channel Models by Noise Analysis,” Biophys. J. 16, 965–971 (1976).

    Article  CAS  Google Scholar 

  46. A. Verveen and L. De Felice, “Membrane Noise,” Prog. Biophys. Molec. Biol. 28, 189–265 (1974).

    Article  CAS  Google Scholar 

  47. T. Tenforde, “Thermal Aspects of Electromagnetic Field Interactions with Bound Calcium Ions at the Nerve Cell Surface,” J. Theor. Biol. 83, 517–521 (1980).

    Article  CAS  Google Scholar 

  48. T. Hill, “Some Possible Biological Effects of Electric Fields Acting on Nucleic Acids or Proteins,” J. Am. Chem. Soc. 80, 2142–2147 (1958).

    Article  CAS  Google Scholar 

  49. Y. Chemitskii, Y. Lin, and S. Konev, “Cooperative Transitions in the Supermolecular Structure of Nerve Protein,” Biofizika 14, 1023–1026 (1969).

    Google Scholar 

  50. D. Engelman, “X-Ray Diffraction Studies of Phase Transitions in the Membrane of Mycoplasma Laidlawii,” J. Mol. Biol. 47, 115–117 (1970).

    Article  CAS  Google Scholar 

  51. H. Kijima and S. Kijima, “Cooperative Response of Chemically Excitable Membranes,” J. Theor. Biol. 71, 567–585 (1978).

    Article  CAS  Google Scholar 

  52. M. Malek-Mansour, G. Nicolis, and I. Prigogine, in Thermodynamics and Kinetics of Biological Processes ( I. Lamprecht and A. Zotin, ed.), Walter de Gruyter & Co., New York (1982), pp. 75–103.

    Google Scholar 

  53. T. Hill and Y. Chen, “Cooperative Effects in Models of Steady-State Transport Across Membranes,” Proc. Natl. Acad. Sci. USA 65, 1069–1076 (1970).

    Article  CAS  Google Scholar 

  54. T. Hill and Y. Chen, “Cooperative Effects in Models of Steady-State Transport Across Membranes; Oscillating Phase Transition,” Proc. Natl. Acad. Sei. USA 66 (1), 189–196 (1970).

    Article  CAS  Google Scholar 

  55. T. Hill and Y. Chen, “Cooperative Effects in Models of Steady-State Transport Across Membranes; Simulation of Potassium Ion Transport in Nerve,” Proc. Natl. Acad. Sei. USA 66 (3), 607–614 (1970).

    Article  CAS  Google Scholar 

  56. V. Denner and F. Kaiser, “Phase Transition Behavior of a Greater Membrane Model,” Int. J. Quantum Chem.: Quantum Biology Symp. 9, 41–57 (1982).

    CAS  Google Scholar 

  57. W. Adey, “Tissue Interactions with Nonionizing Electromagnetic Fields,” Physiol. Rev. 61 (2), 435–514 (1981).

    CAS  Google Scholar 

  58. J. Bond, D. Mikulecky, and C. Jordan, “A Model for Alterations in RF Induced Ca+2 Efflux Based on Changes in the Structure of the Electrical Double Layer at an Enzymatic Surface,” Bioelectromagnetics Abstracts, Sixth Annual Meeting of the Biolelectromagnetics Society, Atlanta (1984).

    Google Scholar 

  59. S. Hubbard and S. Brody, “Glycerophospholipid Variation in Choline and Inositol Autotrophs of Neurospora Crassa,” J. Biol. Chem. 250, 7173–7179 (1975).

    CAS  Google Scholar 

  60. A. Trauble, Biomembranes 3, 197–227 (1972).

    CAS  Google Scholar 

  61. H. Trauble, M. Teubner, P. Woolley, and E. Eibl, “Electrostatic Interactions at Charged Lipid Membranes.” I. Effects of pH and Univalent Cations on Membrane Structure, Biophys. Chem. 4, 319–342 (1976).

    Article  Google Scholar 

  62. J. Bockris and A. Reddy, Modern Electrochemistry, Vol. 2, Plenum Press, New York (1977).

    Google Scholar 

  63. H. Fröhlich, “The Extraordinary Dielectric Properties of Biological Materials and the Action of Enzymes,” Proc. Natl. Acad. Sci. USA 72 (11), 4211–4215 (1975).

    Article  Google Scholar 

  64. J. DeSimone, “Perturbations in the Structures of the Double Layer at an Enzymic Surface,” J. Theor. Biol. 68, 225–240 (1977).

    Article  CAS  Google Scholar 

  65. J. Pennline, J. Rosenbaum, J. DeSimone, and D. Mikulecky, “A Nonlinear Boundary Value Problem Arising in the Structure of the Double Layer at an Enzymatic Surface,” Math. Biosci. 37, 1–17 (1977).

    Article  CAS  Google Scholar 

  66. A. Pilla, in Bioelectrochemistry ( H. Keyzer and F. Gutmann, eds.), Plenum Press, New York (1980), pp. 353–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Bond, J.D., Huth, G.C. (1986). Electrostatic Modulation of Electromagnetically Induced Nonthermal Responses in Biological Membranes. In: Gutmann, F., Keyzer, H. (eds) Modern Bioelectrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2105-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2105-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9246-3

  • Online ISBN: 978-1-4613-2105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics