Skip to main content

The Interaction of Hormones with Biological Membranes

  • Chapter
  • 272 Accesses

Abstract

Hormones may be divided into two groups, based upon the cellular location from which they initiate their biological effects. The first group, composed of steroid hormones and thyroid hormone, generally exert their effects via initial interactions with a component (receptor) inside target cells. The second group, exemplified by peptide hormones and neurotransmitters, exert their effects via initial interactions with components (receptors) on the plasma membrane of target cells. In addition, the interaction of peptide hormones and neurotransmitters with membranes bears striking resemblance to the interaction with the plasma membrane of a number of other biological agents: prostaglandins, growth factors, and many pharmacological agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tate, R. L., J. M. Holmes, L. D. Kohn, and R. J. Winand. 1975. Characteristics of solubilized thyrotropin receptor from bovine thyroid plasma membranes. J. Biol. Chem. 250: 6527–6533.

    PubMed  CAS  Google Scholar 

  2. Freychet, P., R. Kahn, J. Roth, and D. M. Neville, Jr. 1973. Insulin receptors in liver cell plasma membranes. Excerpta Med. Int. Congr. Ser. 256: 335–340.

    Google Scholar 

  3. Westphal, U. 1971. High-affinity binding of estradiol and testosterone to serum proteins. Monogr. Endocrinol. 4: 356–374.

    Google Scholar 

  4. Fanestil, D. D., and I. S. Edelman. 1966. Characteristics of the nuclear receptors for aldosterone. Proc. Natl. Acad. Sci. USA 56: 872–879.

    Article  PubMed  CAS  Google Scholar 

  5. Fressinad, P. H., P. Corval, J. P. Frenoy, and J. Menard. 1973. Purification of 125I-labeled lysine-vasopressin by affinity chromatography on Sepharose-bound neurophysins. Biochim. Biophys. Acta 317: 572–576.

    Google Scholar 

  6. Roy, C., and D. A. Ausiello. 1981. Characterization of (8-lysine) vasopressin binding sites on a pig kidney cell line (LLC-PKi). J. Biol. Chem. 256: 3415–3422.

    PubMed  CAS  Google Scholar 

  7. Hazum, E., P. Cuatrecasas, J. Marian, and P. M. Conn. 1980. Receptor-mediated internalization of fluorescent gonadotropin-releasing hormone by pituitary gonadotropes. Proc. Natl. Acad. Sci. USA 77: 6692–6695.

    Article  PubMed  CAS  Google Scholar 

  8. Willingham, M. C., and I. Pastan. 1980. The receptosome: An intermediate organelle of receptor-mediated endocytosis in cultured fibroblasts. Cell 21: 67–77.

    Article  PubMed  CAS  Google Scholar 

  9. Schneider, Y.-J., and A. Trouet. 1981. Effect of chloroquine and methylamine on endocytosis of fluorescein-labelled control Ig G and of anti-(plasma membrane) IgG by cultured fibroblasts. Eur. J. Biochem. 118: 33–38.

    Article  PubMed  CAS  Google Scholar 

  10. Jarett, L., and R. M. Smith. 1975. Ultra-structural localization of insulin receptors on adipocytes. Proc. Natl. Acad. Sci. USA 72: 3526–3530.

    Article  PubMed  CAS  Google Scholar 

  11. Cuatrecasas, P., M. D. Hollenberg, K.-J. Chang, and V. Bennett. 1975. Hormone receptor complexes and their modulation of membrane function. Recent Prog. Horm. Res. 31: 37–94.

    PubMed  CAS  Google Scholar 

  12. Klotz, I. M. 1982. Numbers of receptor sites from Scatchard graphs: Facts and fantasies. Science 217: 1247–1249.

    Article  PubMed  CAS  Google Scholar 

  13. Munson, P. J., and D. Rodbard. 1983. Number of receptor sites from Scatchard and Klotz graphs: A constructive critique. Science 220: 979–981.

    Article  PubMed  CAS  Google Scholar 

  14. Sasson, S., and A. C. Notides. 1982. The inhibition of the estrogen receptor’s positive cooperative [3H] estradiol binding by the antagonist, clomiphene. J. Biol. Chem. 257: 11540–11545.

    PubMed  CAS  Google Scholar 

  15. Sasson, S., and A. C. Notides. 1983. Estriol and estrone interaction with the estrogen receptor. J. Biol. Chem. 258: 8113–8117.

    PubMed  CAS  Google Scholar 

  16. Taylor, S. I. 1975. Binding of hormones to receptors: An alter¬native explanation on nonlinear Scatchard plots. Biochemistry 14: 2357–2361.

    Article  PubMed  CAS  Google Scholar 

  17. Laduron, P. 1983. More binding, more fancy. TrendsPharm. Sci. 4: 333–335.

    Article  CAS  Google Scholar 

  18. Claire, M., M.-E. Oblin, J.-L. Steimer, H. Nakane, J. Misumi, A. Michaud, and P. Corvol. 1981. Effect of adrenalectomy and aldosterone on the modulation of mineralocorticoid receptors in rat kidney. J. Biol. Chem. 256: 142–147.

    PubMed  CAS  Google Scholar 

  19. DeMeyts, P., J. Roth, D. M. Neville, Jr., J. R. Gavin, III, and M. A. Lesniak. 1973. Insulin interactions with its receptors: Experimental evidence for negative cooperativity. Biochem. Biophys. Res. Commun. 55: 154–161.

    Article  CAS  Google Scholar 

  20. Harmon, J. T., E. S. Kempner, and C. R. Kahn. 1981. Demonstra¬tion by radiation inactivation that insulin alters the structure of the insulin receptor in rat liver membranes. J. Biol. Chem. 256: 7719–7722.

    PubMed  CAS  Google Scholar 

  21. Slavin, B., and S. Yatziv. 1980. Hormone binding alters the con¬formation of the insulin receptor. Science 210: 1152–1153.

    Article  Google Scholar 

  22. DeLean, A., J. M. Stadel, and R. J. Lefkowitz. 1980. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled p-adrenergic receptor. J. Biol. Chem. 255: 7108–7117.

    CAS  Google Scholar 

  23. Rodbell, M. 1980. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature (London) 284: 17–22.

    Article  CAS  Google Scholar 

  24. Rizzoli, R. E., T. M. Murray, S. J. Marx, and G. D. Aurbach. 1983. Binding of radio-iodinated bovine parathyroid hormone-(l- 84) to canine renal cortical membranes. Endocrinology 112: 1303–1312.

    Article  PubMed  CAS  Google Scholar 

  25. Hoffman, B. B., and R. J. Lefkowitz. 1980. Radioligand binding studies of adrenergic receptors: New insights into molecular and physiological regulation. Annu. Rev. Pharmacol. Toxicol. 20: 581–608.

    Article  PubMed  CAS  Google Scholar 

  26. Venter, J. C., and C. M. Fraser. 1983. The structure of α- and (β- adrenergic receptors. Trends Pharm. Sci. 4: 256–258.

    Article  CAS  Google Scholar 

  27. Graham, R. M., H.-J. Hess, and C. J. Homey. 1982. Biophysical characterization of the purified α1-adrenergic receptor and identification of the hormone binding subunit. J. Biol. Chem. 257: 15174–15181.

    PubMed  CAS  Google Scholar 

  28. Fujita-Yamaguchi, Y., S. Choi, Y. Sakamoto, and K. Itakura. 1983. Purification of insulin receptor with full binding activity. J. Biol. Chem. 258: 5045–5049.

    PubMed  CAS  Google Scholar 

  29. Birnbaumer, M., W. T. Schrader, and B. W. O’Malley. 1983. Photoaffinity labeling of the chick progesterone receptor proteins. J. Biol. Chem. 258: 1637–1644.

    PubMed  CAS  Google Scholar 

  30. Maturo, J. M., III, M. D. Hollenberg, and L. S. Aglio. 1983. Insulin receptor: Insulin-modulated interconversion between distinct molecular forms involving disulfide-sulfhydryl exchange. Biochemistry 22: 2579–2586.

    Article  PubMed  CAS  Google Scholar 

  31. Corin, R. E., and D. B. Donner. 1982. Insulin receptors convert to a higher affinity state subsequent to hormone binding. J. Biol. Chem. 257: 104–110.

    PubMed  CAS  Google Scholar 

  32. Bhaumick, B., R. M. Bala, and M. D. Hallenberg. 1981. Somatomedin receptor of human placenta: Solubilization, photolabeling, partial purification, and comparison with insulin receptor. Proc. Natl. Acad. Sci. USA 78: 4279–4283.

    Article  PubMed  CAS  Google Scholar 

  33. Jacobs, S., and P. Cuatrecasas. 1983. Insulin receptors. Annu. Rev. Pharmacol. Toxicol. 23: 461–479.

    Article  PubMed  CAS  Google Scholar 

  34. Czech, M. P. 1982. Structural and functional homologies in the receptors for insulin and the insulin-like growth factors. Cell 31: 8–10.

    Article  PubMed  CAS  Google Scholar 

  35. Czech, M. P., and J. Massague. 1982. Subunit structure and dynamics of the insulin receptor. Fed. Proc. 41: 2719–2723.

    PubMed  CAS  Google Scholar 

  36. Hollenberg, M. D. 1982. Membrane receptors and hormone action. II. New perspectives for receptor-modulated cell function. Trends Pharm. Sci. 3: 25–28.

    Article  CAS  Google Scholar 

  37. Taylor, P., and S. M. Sine. 1982. Ligand occupation and the functional states of the nicotinic-cholinergic receptor. Trends Pharm. Sci. 3: 197–200.

    Article  CAS  Google Scholar 

  38. Walters, M. R., V. Hunziker, and A. W. Norman. 1981. Apparent nuclear localization of unoccupied receptors for 1,25-dihydroxy- vitamin D3. Biochem. Biophys. Res. Commun. 98: 990–996.

    Article  PubMed  CAS  Google Scholar 

  39. Sheridan, P. J., J. M. Buchanan, V. C. Anselmo, and P. M. Martin. 1981. Unbound progesterone receptors are in equilibrium between nucleus and cytoplasm in cells of the rat uterus. Endocrinology 108: 1533–1537.

    Article  PubMed  CAS  Google Scholar 

  40. Sheridan, P. J., J. M. Buchanan, V. C. Anselmo, and P. M. Martin. 1979. Equilibrium: The intracellular distribution of steroid receptors. Nature (London) 282: 579–582.

    Article  CAS  Google Scholar 

  41. Baulieu, E.-E. 1978. Cell membrane: A target for steroid hormones. Mol. Cell. Endocrinol. 12: 247–254.

    Article  PubMed  CAS  Google Scholar 

  42. Duval, D., S. Durant, and F. Homo-Delarche. 1983. Non-genomic effects of steroids: Interactions of steroid molecules with membrane structures and functions. Biochim. Biophys. Acta 737: 409–442.

    PubMed  CAS  Google Scholar 

  43. Koenig, H., A. Goldstone, and C. Y. Lu. 1982. Testosterone induces a rapid stimulation of endocytosis, amino acid and hexose transport in mouse kidney cortex. Biochem. Biophys. Res. Commun. 106: 346–353.

    Article  PubMed  CAS  Google Scholar 

  44. Finidori-Lepicard, J., S. Schorderet-Slatkine, J. Hanoune, and E.- E. Baulieu. 1981. Progesterone inhibits membrane-bound adenylate cyclase in Xenopus laevis oocytes. Nature (London) 292: 255–257.

    Article  CAS  Google Scholar 

  45. Sadler, S. E., and J. L. Mailer. 1982. Identification of a steroid receptor on the surface of Xenopus laevis oocytes by photoaffinity labeling. J. Biol. Chem. 257: 355–361.

    PubMed  CAS  Google Scholar 

  46. Pascual, A., J. Casanova, and H. H. Samuels. 1982. Photoaffinity labeling of thyroid hormone nuclear receptors in intact cells. J. Biol. Chem. 257: 9640–9647.

    PubMed  CAS  Google Scholar 

  47. Kasuga, M., F. A. Karlsson, and C. R. Kahn. 1982. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 215: 185–187.

    Article  PubMed  CAS  Google Scholar 

  48. Avruch, J., R. A. Nemenoff, P. J. Blackshear, M. W. Pierce, and R. Osathanondh. 1982. Insulin-stimulated tyrosine phosphorylation of the insulin receptor in detergent extracts of human placental membrane. J. Biol. Chem. 257: 15162–15166.

    PubMed  CAS  Google Scholar 

  49. Roth, R. A., and D. J. Cassell. 1983. Insulin receptor: Evidence that it is a protein kinase. Science 219: 299–301.

    Article  PubMed  CAS  Google Scholar 

  50. Shia, M. A., and P. F. Pilch. 1983. The 0 subunit of the insulin receptor is an insulin-activated protein kinase. Biochemistry 22: 717–721.

    Article  PubMed  CAS  Google Scholar 

  51. Suzuki, K., and T. Kono. 1980. Evidence that insulin causes trans-location of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl. Acad. Sci. USA 77: 2542–2545.

    Article  PubMed  CAS  Google Scholar 

  52. Perisic, O., and J. A. Traugh. 1983. Protease-activated kinase II as the potential mediator of insulin-stimulated phosphorylation of ribosomal protein S6. J. Biol. Chem. 258: 9589–9592.

    PubMed  CAS  Google Scholar 

  53. Seals, J. R., and M. P. Czech. 1982. Production by plasma membranes of a chemical mediator of insulin action. Fed. Proc. 41: 2730–2735.

    PubMed  CAS  Google Scholar 

  54. Jarret, L., F. L. Kiechle, and J. C. Parker. 1982. Chemical mediator or mediators of insulin action: Response to insulin and mode of action. Fed. Proc. 41: 2736–2741.

    Google Scholar 

  55. Goldfine, I. D., and G. J. Smith. 1976. Binding of insulin to isolated nuclei. Proc. Natl. Acad. Sci. USA 73: 1427–1431.

    Article  PubMed  CAS  Google Scholar 

  56. Kuhn, H., J. H. Cook, and J. W. Dreyer. 1973. Phosphorylation of rhodopsin in bovine photoreceptor membranes: A dark reaction after illumination. Biochemistry 12: 2495–2502.

    Article  PubMed  CAS  Google Scholar 

  57. Weller, M., N. Virmaux, and P. Mandel. 1975. Light-stimulated phosphorylation of rhodopsin in the retina: The presence of a protein kinase that is specific for photobleached rhodopsin. Proc. Natl. Acad. Sci. USA 72: 381–385.

    Article  PubMed  CAS  Google Scholar 

  58. Jacobs, S., F. C. Kull, Jr., H. S. Earp, M. E. Svoboda, J. J. VanWyk, and P. Cuatrecasas. 1983. Somatomedin-C stimulates the phosphorylation of the p-subunit of its own receptor. J. Biol. Chem. 258: 9581–9584.

    PubMed  CAS  Google Scholar 

  59. Hollenberg, M. D. 1982. Receptor mediated phosphorylation reactions. Trends Pharm. Sci. 3: 271–273.

    Article  CAS  Google Scholar 

  60. Levitzki, A. 1982. Activation and inhibition of adenylate cyclase by hormones: Mechanistic aspects. Trends Pharm. Sci. 3: 203–208.

    Article  CAS  Google Scholar 

  61. Michel, T., B. B. Hoffman, and R. J. Lefkowitz. 1980. Differential regulation of the α2_adrenergic receptor by Na + and guanine nucleotides. Nature (London) 288: 709–711.

    Article  CAS  Google Scholar 

  62. Jacobs, K. H., K. Aktories, and G. Schultz. 1983. A nucleotide regulatory site for somatostatin inhibition of adenylate cyclase in S49 lymphoma cells. Nature (London) 303: 177–178.

    Article  Google Scholar 

  63. Gil, D. W., S. A. Brown, S. H. Seeholzer, and G. M. Widley. 1983. Minisymposium: I. Introduction: Phosphatidylinositol turnover and cellular function. Life Sci. 32: 2043–2046.

    Article  PubMed  CAS  Google Scholar 

  64. Serhan, C. N., J. Fridovich, E. J. Goetzl, P. B. Dunham, and G. Weissmann. 1982. Leukotriene B4 and phosphatidic acid are calcium ionophores. J. Biol. Chem. 257: 4746–4752.

    PubMed  CAS  Google Scholar 

  65. Rhodes, D., V. Prpic, J. H. Eaton, and P. F. Blackmore. 1983. Stimulation of phosphatidyl-4,5-bisphosphate hydrolysis in hepatocytes by vasopressin. J. Biol. Chem. 258: 2770–2773.

    PubMed  CAS  Google Scholar 

  66. Prpic, V., P. F. Blackmore, and J. H. Eaton. 1982. Phosphatidylinositol breakdown induced by vasopressin and epinephrine in hepatocytes is calcium-dependent. J. Biol. Chem. 257. 11323–11331.

    PubMed  CAS  Google Scholar 

  67. Guillon, G., P.-O. Couraud, D. Butlen, and S. Jard. 1980. Size of vasopressin receptors from rat liver and kidney. Eur. J. Biochem. 111: 287–294.

    Article  PubMed  CAS  Google Scholar 

  68. Cantau, B., S. Keppens, H. DeWulf, and S. Jard. 1980. [3H]- Vasopressin binding to isolated rat hepatocytes and liver membranes: Relation to glycogen and phosphorylase activation. J. Receptor Res. 1: 137–168.

    Google Scholar 

  69. Keppens, S., and H. DeWulf. 1979. The nature of the hepatic receptors involved in vasopressin-induced glycogenolysis. Biochim. Biophys. Acta 588: 63–69.

    PubMed  CAS  Google Scholar 

  70. Fan, J. Y., J.-L. Carpenter, P. Gordon, E. VanObberghen, N. M. Blackett, C. Grunfeld, and L. Orci. 1982. Receptor-mediatedendocytosis of insulin: Role of microvilli, coated pits and coated vesicles. Proc. Natl. Acad. Sci. USA 79: 7788–7791.

    Article  PubMed  CAS  Google Scholar 

  71. Smith, R. M., and L. Jarett. 1983. Quantitative ultrastructural analysis of receptor-mediated insulin uptake into adipocytes. J. Cell. Physiol. 115: 119–207.

    Article  Google Scholar 

  72. Khan, M. N., B. I. Posner, A. K. Verma, R. J. Khan, and J. J. M. Bergeron. 1981. Intracellular hormone receptors: Evidence for insulin and lactogen receptors in a unique vesicle sedimenting in lysosome fractions of rat liver. Proc. Natl. Acad. Sci. USA 78: 4980–4984.

    Article  PubMed  CAS  Google Scholar 

  73. Marshall, S., and J. M. Olefsky. 1980. The endocytic-internalization pathway of insulin metabolism: Relationship to insulin degradation and activation of glucose transport. Endocrinology 107: 1937–1945.

    Article  PubMed  CAS  Google Scholar 

  74. Baldwin, D., Jr., M. Prince, S. Marshall, P. Davies, and J. M. Olefsky. 1980. Regulation of insulin receptors: Evidence for involvement of an endocytic internalization pathway. Proc. Natl. Acad. Sci. USA 77: 5975–5978.

    Article  PubMed  CAS  Google Scholar 

  75. Dautry-Varsat, A., A. Ciechanover, and H. F. Lodish. 1983. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 80: 2258–2262.

    Google Scholar 

  76. Ciechanover, A., A. L. Schwartz, A. Dautry-Varsat, and H. F. Lodish. 1983. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. J. Biol. Chem. 258: 9681–9689.

    PubMed  CAS  Google Scholar 

  77. Olefsky, J. M., S. Marshall, P. Berhanu, M. Saekow, K. Heindenreich, and A. Green. 1982. Internalization and intracellular processing of insulin and insulin receptors in adipocytes. Metabolism 31: 670–690.

    Article  PubMed  CAS  Google Scholar 

  78. Brown, M. S., R. G. W. Anderson, and J. L. Goldstein. 1983. Recycling receptors: The round-trip itinerary of migrant membrane proteins. Cell 32: 663–667.

    Article  PubMed  CAS  Google Scholar 

  79. Kassis, J. A., and J. Gorski. 1981. Estrogen receptor replenishment. J. Biol. Chem. 256: 7378–7382.

    PubMed  CAS  Google Scholar 

  80. Kassis, J. A., and J. Gorski. 1983. On the mechanism of estrogen receptor replenishment: Recycling, resynthesis and/or processing. Mol. Cell. Biochem. 52: 27–36.

    Article  PubMed  CAS  Google Scholar 

  81. Gavin, J. R., Ill, J. Roth, D. M. Neville, Jr., P. DeMeyts, and D. N. Buell. 1974. Insulin-dependent regulation of insulin receptor concentrations: A direct demonstration in cell culture. Proc. Natl. Acad. Sci. USA 71: 84–88.

    Article  PubMed  CAS  Google Scholar 

  82. Krupp, M., and M. D. Lane. 1981. On the mechanism of ligand- induced down-regulation of insulin receptor level in the liver cell. J. Biol. Chem. 256: 1689–1694.

    PubMed  CAS  Google Scholar 

  83. Williams, L. T., R. J. Lefkovitz, A. M. Watanabe, D. R. Hathaway, and H. R. Besch, Jr. 1977. Thyroid hormone regulation of β-adrenergic receptor number. J. Biol. Chem. 252: 2787–2789.

    PubMed  CAS  Google Scholar 

  84. Roy, C., A. S. Preston, and J. S. Handler. 1980. Insulin and serum increase the number of receptors for vasopressin in a kidney-derived line of cells grown in a defined medium. Proc. Natl. Acad. Sci. USA 77: 5979–5983.

    Article  PubMed  CAS  Google Scholar 

  85. Fantus, I. G., G. A. Saviolakis, J. A. Hedo, and P. Gordon. 1982. Mechanism of glucocorticoid-induced increases in insulin receptors of cultured human lymphocytes. J. Biol. Chem. 257: 8277–8283.

    PubMed  CAS  Google Scholar 

  86. Michell, R. H. 1983. Polyphosphoinositide breakdown as the ini-tiating reaction in receptor-stimulated inositol phospholipid metabolism. Life Sci. 32: 2083–2085.

    Article  PubMed  CAS  Google Scholar 

  87. Beaumont, K., and D. D. Fanestil. 1983. Characterization of rat brain aldosterone receptors reveals high affinity for corticosterone. Endocrinology 113: 2043–2051.

    Article  PubMed  CAS  Google Scholar 

  88. Fanestil, D. D., and J. Kipnowski. 1982. Molecular action of aldosterone. Klin. Wochenschr. 60: 1180–1185.

    Article  PubMed  CAS  Google Scholar 

  89. Fain, J. N., S.-H. Lin, I. Litosch, and M. Wallace. 1983. Hormonal regulation of phosphatidylinositol breakdown. Life Sci. 32: 2055–2067.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Fanestil, D.D. (1986). The Interaction of Hormones with Biological Membranes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics