Skip to main content

Regulation of Cellular Volume

  • Chapter
Physiology of Membrane Disorders

Abstract

With some 55 to 60% of body weight attributable to water and approximately two-thirds of this within cells, the constancy of body weight is testimonial to the precision with which cells regulate their water content. Understanding of how this is accomplished is still, however, controversial, and the subject of several recent reviews.(1–5)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grantham, J., M. Linshaw, and L. Welling. 1981. Volume regulation in isotonic and hypotonic media in isolated rabbit renal proximal tubule. In: Epithelial Ion and Water Transport. A. D. C. Macknight and J. P. Leader, eds. Raven Press, New York. pp. 339–347.

    Google Scholar 

  2. Hoffmann, E. K. 1977. Control of cell volume. In: Transport of Ions and Water in Animals. B. L. Gupta, R. B. Moreton, J. L. Oschman, and B.J. Wall, eds. Academic Press, New York. pp. 285–332.

    Google Scholar 

  3. Macknight, A. D. C. 1981. Ouabain-insensitive volume regulation—A reappraisal. In: Epithelial Ion and Water Transport. A. D. C. Macknight and J. P. Leader, eds. Raven Press, New York, pp. 357–362.

    Google Scholar 

  4. Macknight, A. D. C., and A. Leaf. 1977. Regulation of cellular volume. Physiol. Rev. 57: 510–573.

    PubMed  CAS  Google Scholar 

  5. Whittembury, G., and J. J. Grantham. 1976. Cellular aspects of renal sodium transport and cell volume regulation. Kidney Int. 9: 103–120.

    PubMed  CAS  Google Scholar 

  6. Peters, J. P. 1944. Water exchange. Physiol. Rev. 24: 491–531.

    CAS  Google Scholar 

  7. Sabbatini, L. 1901. Determination du point de congélation des organes animaux. J. Physiol. (Pathol. Gen.) 3: 939–950.

    Google Scholar 

  8. Gomöri, P., and S. Molnâr. 1932. Die Störung der osmoregulation der gewebe bei der Wasservergiftung. Arch. Exp. Pathol. Pharmakol. 167: 459–468.

    Google Scholar 

  9. Stern, J. R., L. V. Eggleston, R. Hems, and H. A. Krebs. 1949. Accumulation of glutamic acid in isolated brain tissue. Biochem. J. 44: 410–418.

    CAS  Google Scholar 

  10. Aebi, H. 1953. Elektrolyte-Akkumulierung und Osmoregulation in Gewebsschmitten. Helv. Physiol. Pharmacol. Acta 11: 96–121.

    PubMed  CAS  Google Scholar 

  11. Robinson, J. R. 1949. Some effects of glucose and calcium upon the metabolism of kidney slices from adult and newborn rats. Biochem. J. 45: 68–74.

    CAS  Google Scholar 

  12. Robinson, J. R. 1950. Osmoregulation in surviving slices from the kidneys of adult rats. Proc. R. Soc. London Ser. B 137: 378–402.

    CAS  Google Scholar 

  13. Robinson, J. R. 1953. The active transport of water in living systems. Biol. Rev. 28: 158–194.

    CAS  Google Scholar 

  14. Robinson, J. R. 1954. Secretion and transport of water. Symp. Soc. Exp. Biol. 8: 42–62.

    CAS  Google Scholar 

  15. Deyrup, I. J. 1953. Reversal of fluid uptake by rat kidney slices immersed in isosmotic solutions in vitro. Am. J. Physiol. 175: 349–352.

    PubMed  CAS  Google Scholar 

  16. Opie, E. L. 1949. Movements of water in tissues removed from the body and its relation to movements of water during life. J. Exp. Med. 89: 185–208.

    PubMed  CAS  Google Scholar 

  17. Mudge, G. H. 1951. Studies on potassium accumulation by rabbit kidney slices: Effect of metabolic activity. Am. J. Physiol. 165: 113–127.

    PubMed  CAS  Google Scholar 

  18. Appleboom, J. W. T., W. A. Brodsky, W. S. Tuttle, and I. Diamond. 1958. Freezing point depression of mammalian tissues after sudden heating in boiling distilled water. J. Gen. Physiol. 41: 1153–1169.

    Google Scholar 

  19. Maffly, R. H., and A. Leaf. 1959. The potential of water in mammalian tissues. J. Gen. Physiol. 42: 1257–1275.

    PubMed  CAS  Google Scholar 

  20. Wilson, T. H. 1954. Ionic permeability and osmotic swelling of cells. Science 120: 104–105.

    PubMed  CAS  Google Scholar 

  21. Leaf, A. 1956. On the mechanism of fluid exchange of tissues in vitro. Biochem. J. 62: 241–248.

    PubMed  CAS  Google Scholar 

  22. Davson, H. 1970. A Textbook of General Physiology. Churchill, London.

    Google Scholar 

  23. Robinson, J. R. 1975. A Prelude to Physiology. Blackwell, Oxford.

    Google Scholar 

  24. Hitchcock, D. I. 1924. Proteins and the Donnan equilibrium. Physiol. Rev. 4: 505–531.

    Google Scholar 

  25. Harvey, E. N. 1954. Tension at the cell surface. Protoplasmatologia 2: E5.

    Google Scholar 

  26. Leaf, A. 1959. Maintenance of concentration gradients and regulation of cell volume. Ann. N.Y. Acad. Sci. 72: 396–404.

    PubMed  CAS  Google Scholar 

  27. Post, R. L., and P. C. Jolly. 1957. The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25: 118–128.

    PubMed  CAS  Google Scholar 

  28. Tosteson, D. C., and J. F. Hoffman. 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44: 169–194.

    PubMed  CAS  Google Scholar 

  29. Tosteson, D. C. 1964. Regulation of cell volume by sodium and potassium transport. In: The Cellular Functions of Membrane Transport. J. F. Hoffman, ed. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  30. Stein, W. D. 1967. The Movement of Molecules across Cell Membranes. Academic Press, New York.

    Google Scholar 

  31. Evans, J. V. 1954. Electrolyte concentrations in red blood cells of British breeds of sheep. Nature (London) 174: 931.

    CAS  Google Scholar 

  32. Evans, J. V., and A. T. Phillipson. 1957. Electrolyte concentrations in the erythrocytes of the goat and ox. J. Physiol. (Lon don) 139: 87–96.

    CAS  Google Scholar 

  33. Wolf, M. B. 1980. A simulation study of the anomalous osmotic behaviour of red cells. J. Theor. Biol. 83: 687–700.

    PubMed  CAS  Google Scholar 

  34. Jakobsson, E. 1980. Interactions of cell volume, membrane potential, and membrane transport parameters. Am. J. Physiol 238: C196–C206.

    PubMed  CAS  Google Scholar 

  35. Woodbury, J. W. 1965. The cell membrane: Ionic and potential gradients and active transport. In: Physiology and Biophysics. T. H. Rush and H. D. Patton, eds. Saunders, Philadelphia.

    Google Scholar 

  36. Linshaw, M. A., and F. B. Stapleton. 1978. Effect of ouabain and colloid osmotic pressure on renal tubule cell volume. Am. J. Physiol. 235: F480–F491.

    PubMed  CAS  Google Scholar 

  37. Linshaw, M. A., F. B. Stapleton, F. E. Cuppage, and J. J. Grantham. 1977. Effect of basement membrane and colloid osmotic pressure on renal tubule cell volume. Am. J. Physiol. 233: F325–F332.

    PubMed  CAS  Google Scholar 

  38. Hughes, P. M., and A. D. C. Macknight. 1977. Effects of replacing medium sodium by choline, caesium, or rubidium, on water and ion contents of renal cortical slices. J. Physiol. (London) 267: 113–136.

    CAS  Google Scholar 

  39. Armstrong, W. M., W. Wojtkowski, and W. R. Bixenman. 1977. A new solid state microelectrode for measuring intracellular chloride activities. Biochim. Biophys. Acta 465: 165–170.

    PubMed  CAS  Google Scholar 

  40. Duffey, M. E., K. Turnheim, R. A. Frizzell, and S. G. Schultz. 1978. Intracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “uphill” chloride transport. J. Membr. Biol. 42: 229–245.

    PubMed  CAS  Google Scholar 

  41. Spring, K. R., and G. Kimura. 1978. Chloride reabsorption by renal proximal tubules of Necturus. J. Membr. Biol. 38: 233–254.

    PubMed  CAS  Google Scholar 

  42. Macknight, A. D. C. 1968. Water and electrolyte contents of rat renal cortical slices incubated in potassium-free media and media containing ouabain. Biochim. Biophys. Acta 150: 263–270.

    PubMed  CAS  Google Scholar 

  43. Whittembury, G. 1965. Sodium extrusion and potassium uptake in guinea pig kidney cortex slices. J. Gen. Physiol 48: 699–717.

    PubMed  CAS  Google Scholar 

  44. Elsehove, A., and G. D. V. Van Rossum. 1963. Net movements of sodium and potassium, and their relation to respiration, in slices of rat liver incubated in vitro. J. Physiol (London) 238: 531–553.

    Google Scholar 

  45. Macknight, A. D. C., J. P. Pilgrim, and B. A. Robinson. 1974. The regulation of cellular volume in liver slices. J. Physiol (London) 168: 279–294.

    Google Scholar 

  46. Kleinzeller, A., and A. Knotkova. 1964. Electrolyte transport in rat diaphragm. Physiol Bohemoslov. 13: 317–326.

    PubMed  CAS  Google Scholar 

  47. Rixon, R. H., and J. A. F. Stevenson. 1956. The water and electrolyte metabolism of rat diaphragm in vitro. Can. J. Biochem. Physiol 34: 1069–1083.

    PubMed  CAS  Google Scholar 

  48. Page, E., R. J. Goerke, and S. R. Storm. 1964. Cat heart muscle in vitro. IV. Inhibition of transport in quiescent muscles. J. Gen. Physiol. 47: 531–543.

    PubMed  CAS  Google Scholar 

  49. Pine, M. B., O. H. L. Bing, R. M. Weintraub, and W. H. Abelmann. 1979. Dissociation of cell volume regulation and sodium–potassium exchange pump activity in dog myocardium in vitro. J. Mol. Cell. Cardiol. 11: 585–590.

    PubMed  CAS  Google Scholar 

  50. Baethmann, A., and A. Van Harreveld. 1973. Water and electrolyte distribution in gray matter rendered edematous with a metabolic inhibitor. J. Neuropathol. Exp. Neurol. 32: 408–423.

    PubMed  CAS  Google Scholar 

  51. Zimmermann, V., and K. A. Hossmann. 1975. Resuscitation of the monkey brain after one hour’s complete ischemia. II. Brain water and electrolytes. Brain Res. 85: 1–11.

    PubMed  CAS  Google Scholar 

  52. Flores, J., D. R. DiBona, C. H. Beck, and A. Leaf. 1972. The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute. J. Clin. Invest. 51: 118–126.

    PubMed  CAS  Google Scholar 

  53. Glaumann, B., H. Glaumann, I. K. Berezesky, and B. F. Trump. 1975. Studies on the pathogenesis of ischemic cell injury. II. Morphological changes of the pars convoluta (Pi and P2) of the proximal tubule of the rat kidney made ischemic in vivo. Virchows Arch. B 19: 281–302.

    CAS  Google Scholar 

  54. Jennings, R. B., and C. E. Ganóte. 1974. Structural changes in myocardium during acute ischaemia. Circ. Res. 35:( Suppl. III ): 156–172.

    PubMed  Google Scholar 

  55. Chien, K. R., J. Abrams, A. Serroni, J. T. Martin, and J. L. Farber. 1978. Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J. Biol. Chem. 253: 4809–4817.

    PubMed  CAS  Google Scholar 

  56. Chien, K. R., R. G. Pfau, and J. L. Farber. 1979. Ischemic myocardial cell injury: Prevention by chlorpromazine of an accelerated phospholipid degradation and associated membrane dysfunction. Am. J. Pathol. 97: 505–530.

    PubMed  CAS  Google Scholar 

  57. Dunn. M.J. 1974. Red blood cell calcium and magnesium: Effects upon sodium and potassium transport and cellular morphology. Biochim. Biophys. Acta 352: 97–116.

    PubMed  CAS  Google Scholar 

  58. Romero, P. J., and R. Whittam. 1971. The control by internal calcium of membrane permeability to sodium and potassium. J. Physiol. (London) 214: 481–507.

    CAS  Google Scholar 

  59. Cooke, K. R. 1981. Species differences in the effect of ouabain on cell volume recovery in renal cortex. In: Epithelial Ion and Water Transport. A. D. C. Macknight and J. P. Leader, eds. Raven Press, New York. pp. 329–338.

    Google Scholar 

  60. Bojesen, E., and P. P. Leyssac. 1965. The Kidney cortex slice technique as a model for sodium transport in vivo: A qualitative evaluation. Acta Physiol. Scand. 65: 20–32.

    CAS  Google Scholar 

  61. Pine, M. B., J. B. Caulfield, O. H. L. Bing, W. W. Brooks, and W. H. Abelmann. 1979. Resistance of contracting myocardium to swelling with hypoxia and glycolytic blockade. Cardiovasc. Res. 13: 215–224.

    PubMed  CAS  Google Scholar 

  62. Pine, M. B., D. Kahne, B. Jaski, C. S. Apstein, K. Thorp, and W. H. Abelmann. 1980. Sodium permeability and myocardial resistance to cell swelling during metabolic blockade. Am. J. Physiol. 239: H31–H39.

    PubMed  CAS  Google Scholar 

  63. Ganóte, C. E., R. B. Jennings, M. L. Hill, and E. C. Grochowski. 1976. Experimental myocardial ischemic injury. II. Effects of in vivo ischemia on dog heart slice function in vitro. J. Mol. Cell. Cardiol. 8: 189–204.

    PubMed  Google Scholar 

  64. Grochowski, E. C., C. E. Ganóte, M. L. Hill, and R. B. Jennings. 1976. Experimental myocardial ischemic injury. I. A comparison of Stadie–Riggs and free-hand slicing techniques on tissue ultrastructure, water and electrolytes during in vitro incubation. J. Mol. Cell. Cardiol. 8: 173 – 187.

    PubMed  CAS  Google Scholar 

  65. Pine, M. B., O. H. L. Bing, R. M. Weintraub, and W. H. Abelmann. 1981. Myocardial volume regulation after normothermic and hypothermic ischemic arrest in dogs. Am. J. Physiol. 240: H116 – H125.

    PubMed  CAS  Google Scholar 

  66. Pine, M. B., D. Rhodes, K. Thorp, and Y. Tsai. 1979. Anion exchange and volume regulation during metabolic blockade of renal cortical slices. J. Physiol. (London) 297: 387 – 403.

    CAS  Google Scholar 

  67. Rothstein, A. 1959. Cell membrane as site of action of heavy metals. Fed. Proc. 18: 1026 – 1035.

    PubMed  CAS  Google Scholar 

  68. Macknight, A. D. C. 1968. Water and electrolyte contents of rat renal cortical slices incubated in medium containing p-chloromer- curibenzoic acid or p-chloromercuribenzoic acid and ouabain. Biochim. Biophys. Acta 163: 500 – 505.

    PubMed  CAS  Google Scholar 

  69. Lichtenstein, N. S., and A. Leaf. 1965. Effect of amphotericin B on the permeability of the toad bladder. J. Clin. Invest. 44:1328– 1342.

    PubMed  CAS  Google Scholar 

  70. Grinstein, S., and A. Rothstein. 1978. Chemically induced cation permeability in red cell membrane vesicles: The sidedness of the response and the proteins involved. Biochim. Biophys. Acta 508: 236 – 245.

    PubMed  CAS  Google Scholar 

  71. Cook, J. S. 1965. The quantitative interrelationships between ion fluxes, cell swelling, and radiation dose in ultraviolet hemolysis. J. Gen. Physiol. 48: 719 – 734.

    PubMed  CAS  Google Scholar 

  72. Recknagel, R. O., and E. A. Glende, Jr. 1977. Lipid peroxidation: A specific form of cellular injury. In: Handbook of Physiology, Section 9. D. H. K. Lee, ed. American Physiological Society, Washington, D.C. pp. 591 – 601.

    Google Scholar 

  73. Macfarlane, M. G., and B. C. J. G. Knight. 1941. The biochemistry of bacterial toxins. 1. The lecithinase activity of CI. welchii toxins. Biochem. J. 35: 884 – 902.

    PubMed  CAS  Google Scholar 

  74. Dean, R. B. 1941. Theories of electrolyte equilibrium in muscle. Biol. Symp. 3: 331–348.

    CAS  Google Scholar 

  75. Skou, J. C. 1965. Enzymatic basis for active transport of Na + and K+ across cell membrane. Physiol. Rev. 45: 596 – 617.

    PubMed  CAS  Google Scholar 

  76. Bourke, R. S., and D. B. Tower. 1966. Fluid compartmentation and electrolytes of cat cerebral cortex in vitro. II. Sodium, potassium and chloride of mature cerebral cortex. J. Neurochem. 13: 1099 – 1117.

    PubMed  CAS  Google Scholar 

  77. Okamato, K., and J. H. Quastel. 1970. Water uptake and energy metabolism in brain slices from the rat. Biochem. J. 120:25– 36.

    Google Scholar 

  78. Burg, M. B., E. F. Grollman, and J. Orloff. 1964. Sodium and potassium flux of separated renal tubules. Am. J. Physiol. 206: 483 – 491.

    PubMed  CAS  Google Scholar 

  79. Dellasega, M., and J. J. Grantham. 1973. Regulation of renal tubule cell volume in hypotonic media. Am. J. Physiol. 224:1288– 1294.

    PubMed  CAS  Google Scholar 

  80. Podevin, R. A., and E. F. Boumendil-Podevin. 1972. Effects of temperature, medium K +, ouabain and ethacrynic acid on transport of electrolyte and water by separated renal tubules. Biochim. Biophys. Acta 282: 234 – 249.

    PubMed  CAS  Google Scholar 

  81. Ericson, A. C., and K. R. Spring. 1982. Coupled NaCl entry into Necturus gallbladder epithelial cells. Am. J. Physiol. 243:C140– C145.

    PubMed  CAS  Google Scholar 

  82. Groot, J. A. 1981. Cell volume regulation in goldfish intestinal mucosa. Pfluegers Arch. 392: 57 – 67.

    CAS  Google Scholar 

  83. Kleinzeller, A., and A. Knotkova. 1964. The effect of ouabain on the electrolyte and water transport in kidney cortex and liver slices. J. Physiol. (London) 175:172–192.

    CAS  Google Scholar 

  84. Maude, D. L. 1969. Effects of K and ouabain on fluid transport and cell Na in proximal tubule in vitro. Am. J. Physiol. 210:1199– 1206.

    Google Scholar 

  85. Maude, D. L. 1970. Mechanism of salt transport and some permeability properties of rat proximal tubule. Am. J. Physiol. 218: 1590 – 1595.

    PubMed  CAS  Google Scholar 

  86. Munday, K. A., B. J. Parsons, and J. A. Poat. 1971. The effect of angiotensin on cation transport by rat kidney cortex slices. J. Physiol. (London) 215: 269 – 282.

    CAS  Google Scholar 

  87. Whittembury, G. 1968. Sodium and water transport in kidney proximal tubular cells. J. Gen. Physiol. 51: 303 – 314.

    PubMed  CAS  Google Scholar 

  88. Willis, J. S. 1966. Characteristics of ion transport in kidney cortex of mammalian hibernators. J. Gen. Physiol. 49: 1221 – 1239.

    PubMed  CAS  Google Scholar 

  89. McLaughlin, C. W. 1973. Control of sodium, potassium and water content and utilisation of oxygen in rat liver slices, studied by affecting cell membrane permeability with calcium and active transport with ouabain. Biochim. Biophys. Acta 323: 285 – 296.

    PubMed  CAS  Google Scholar 

  90. Russo, M. A., G. D. V. Van Rossum, and T. Galeotti. 1977. Observations on the regulation of cell volume and metabolic control in vitro; changes in the composition and ultrastructure of liver slices under conditions of varying metabolic and transporting activity. J. Membr. Biol. 31: 267 – 299.

    PubMed  CAS  Google Scholar 

  91. Van Rossum, G. D. V., and M. A. Russo. 1981. The ouabain resistant mechanism of volume control and the ultrastructural organization of liver slices recovering from swelling in vitro. J. Membr. Biol. 59: 191 – 209.

    PubMed  Google Scholar 

  92. Parker, J. C. 1971. Ouabain-insensitive effects of metabolism on ion and water content of red blood cells. Am. J. Physiol. 221:338– 342.

    PubMed  CAS  Google Scholar 

  93. Daniel, E. E., and K. Robinson. 1971. Effects of inhibitors of active transport on 22Na and 42K movements and on nucleotide levels in rat uteri at 25°C. Can. J. Physiol. Pharmacol. 49:178– 204.

    PubMed  CAS  Google Scholar 

  94. Chan, P. C., V. Calabrese, and L. S. Thiel. 1964. Species differences in the effect of sodium and potassium ions on the ATPase of erythrocyte membranes. Biochim. Biophys. Acta 79: 424 – 426.

    PubMed  CAS  Google Scholar 

  95. Gupta, J. D., V. J. Peterson, and J. D. Harley. 1964. Erythrocytic ouabain-sensitive and ouabain-insensitive adenosine triphosphatase in various mammalian species. Comp. Biochem. Physiol. A 47: 1123 – 1126.

    Google Scholar 

  96. Bernstein, R. E. 1954. Potassium and sodium balance in mammalian red cell. Science 120: 459 – 460.

    PubMed  CAS  Google Scholar 

  97. Parker, J. C. 1973. Dog red blood cells: Adjustments of density in vivo. J. Gen. Physiol. 61: 146 – 157.

    PubMed  CAS  Google Scholar 

  98. Parker, J. C. 1973. Dog red blood cells: Adjustment of salt and water content in vitro. J. Gen. Physiol. 62: 147 – 156.

    PubMed  CAS  Google Scholar 

  99. Parker, J. C., H. J. Gitelman, P. S. Gloson, and D. L. Leonard. 1975. Role of calcium in volume regulation by dog red blood cells. J. Gen. Physiol. 65: 84 – 96.

    PubMed  CAS  Google Scholar 

  100. Parker, J. C., and R. L. Snow. 1972. Influence of external ATP on permeability, metabolism and physical properties of dog red blood cells. Am. J. Physiol. 223: 888 – 893.

    PubMed  CAS  Google Scholar 

  101. Steinbach, H. B. 1940. Sodium and potassium in frog muscle. J. Biol. Chem. 133: 695 – 701.

    CAS  Google Scholar 

  102. Mills, J. W., A. D. C. Macknight, J. A. Jarrell, J. M. Dayer, and D. A. Ausiello. 1981. Interaction of ouabain with a Na+ pump in intact epithelial cells. J. Cell Biol. 88: 637 – 643.

    PubMed  CAS  Google Scholar 

  103. Grantham, J. J., C. M. Lowe, M. Dellasega, and B. Cole. 1977. Effect of hypotonic medium on K and Na content of proximal renal rubules. Am. J. Physiol. 232: F42 – F49.

    PubMed  CAS  Google Scholar 

  104. Allison, J. V. 1975. Effects of ouabain at different concentrations upon slices of rat renal cortex. Proc. Univ. Otago Med. Sch. 53: 38 – 40.

    Google Scholar 

  105. Linshaw, M. A. 1980. Effect of metabolic inhibitors on renal tubule cell volume. Am. J. Physiol. 239: F571 – F577.

    PubMed  CAS  Google Scholar 

  106. Whittembury, G., and F. Proverbio. 1970. Two modes of Na extrusion in cells from guinea-pig kidney cortex slices. Pfluegers Arch. 316: 1 – 25.

    CAS  Google Scholar 

  107. Giebisch, G., E. L. Boulpaep, and G. Whittembury. 1971. Electrolyte transport in kidney tubule cells. Philos. Trans. R. Soc. London Ser. B. 262: 175 – 196.

    CAS  Google Scholar 

  108. Proverbio, F., J. W. L. Robinson, and G. Whittembury. 1970. Sensitivities of Na-K-ATPase and Na extrusion mechanisms to ouabain and ethacrynic acid in the guinea-pig kidney cortex. Biochim. Biophys. Acta 211: 327 – 336.

    CAS  Google Scholar 

  109. Proverbio, F., M. Condrescu-Guidi, and G. Whittembury. 1975. Ouabain-insensitive Na+ stimulation of an Mg2 + -dependent ATPase in kidney tissue. Biochim. Biophys. Acta 394: 281 – 292.

    PubMed  CAS  Google Scholar 

  110. Whittembury, G., and J. Fishman. 1969. Relation between Na extrusion and transtubular absorption in the perfused toad kidney: The effect of K, ouabain and ethacrynic acid. Pfluegers Arch. 307: 138 – 153.

    CAS  Google Scholar 

  111. Gordon, E. E. 1968. The site of action of ethacrynic acid on Ehrlich ascites tumour cells. Biochem. Pharmacol. 17:1237– 1242.

    PubMed  CAS  Google Scholar 

  112. Poat, P. C., J. A. Poat, and K. A. Munday. 1970. The site of action of the diuretic ethacrynic acid on rat kidney and liver tissue. Comp. Gen. Pharmacol. 1: 400 – 408.

    PubMed  CAS  Google Scholar 

  113. Gordon, E. E., and M. De Hartog. 1969. The relationship between cell membrane potassium transport and glycolysis: The effects of ethacrynic acid. J. Gen. Physiol. 54: 650 – 664.

    PubMed  CAS  Google Scholar 

  114. Klahr, S., J. Yates, and J. Bourgoignie. 1971. Inhibition of glycolysis by ethacrynic acid and furosemide. Am. J. Physiol. 221: 1038 – 1043.

    PubMed  CAS  Google Scholar 

  115. Epstein, R. W. 1972. The effects of ethacrynic acid on active transport of sugars and ions and on other metabolic processes in rabbit kidney cortex. Biochim. Biophys. Acta 274: 128 – 139.

    PubMed  CAS  Google Scholar 

  116. Van Rossum, G. D. V., S. A. Ernst, and M. A. Russo. 1981. Relative effects of furosemide and ethacrynic acid on ion transport and energy metabolism in slices of rat kidney-cortex. Naunyn- Schmiedebergs Arch. Pharmacol. 317: 90 – 96.

    PubMed  Google Scholar 

  117. Macknight, A. D. C. 1969. The effects of ethacrynic acid on the electrolyte and water contents of rat renal cortical slices. Biochim. Biophys. Acta 170: 223 – 233.

    Google Scholar 

  118. Van Rossum, D. G. V., and S. A. Ernst. 1978. Effects of ethacrynic acid on ion transport and energy metabolism in slices of avian salt gland and of mammalian liver and kidney cortex. J. Membr. Biol. 43: 251 – 275.

    PubMed  Google Scholar 

  119. Proverbio, F., J. D. Castillo, R. Marin, and G. Whittembury. 1981. Recent experiments related to ouabain-insensitive sodium extrusion in kidney cortex. In: Epithelial Ion and Water Transport. A. D. C. Macknight and J. P. Leader, eds. Raven Press, New York. pp. 349 – 356.

    Google Scholar 

  120. Proverbio, F., and J. R. del Castillo. 1981. Na +-stimulated ATPase activities in kidney basal-lateral plasma membranes. Biochim. Biophys. Acta 646: 99 – 108.

    PubMed  CAS  Google Scholar 

  121. Proverbio, F., T. Proverbio, and B. Marin. 1982. Ouabain-insensitive Na + -stimulated ATPase activity of basolateral plasma membranes from guinea-pig-kidney cortex cells. II. Effect of Ca2+. Biochim. Biophys. Acta 668: 757 – 763.

    Google Scholar 

  122. Caulfield, J. B., and T. K. Borg. 1979. The collagen network of the heart. Lab. Invest. 40: 364 – 372.

    PubMed  CAS  Google Scholar 

  123. Laiho, K. U., and B. F. Trump. 1974. Relationships of ionic, water, and cell volume changes in cellular injury of Ehrlich ascites tumour cells. Lab. Invest. 31: 207 – 215.

    PubMed  CAS  Google Scholar 

  124. Voûte, C. L., K. Møllgard, and H. H. Ussing. 1975. Quantitative relationship between active sodium transport, expansion of endoplasmic reticulum and specialized vacuoles (“scalloped sacs”) in the outermost living cell layer of the frog skin epithelium (Rana temporaria). J. Membr. Biol. 21: 273 – 289.

    PubMed  Google Scholar 

  125. Hazelwood, C. F., ed. 1973. Physiocochemical State of Ions and Water in Living Tissues and Model Systems. Ann. N. Y. Acad. Sci 204.

    Google Scholar 

  126. Ling, G. N., M. M. Ochsenfeld, C. Walton, and T. J. Bersinger. 1980. Mechanism of solute exclusion from cells: The role of protein-water interaction. Physiol. Chem. Phys. 12: 3 – 10.

    CAS  Google Scholar 

  127. Cooke, R., and J. D. Kuntz. 1974. The properties of water in biological systems. Annu. Rev. Biophys. Bioeng. 3: 95 – 126.

    PubMed  CAS  Google Scholar 

  128. Kuntz, I. D., and A. Zipp. 1977. Water in biological systems. N. Engl. J. Med. 297: 262 – 266.

    PubMed  CAS  Google Scholar 

  129. Shporer, M., and M. M. Civan. 1977. The state of water and alkali cations within the intracellular fluids: The contribution of NMR spectroscopy. Curr. Top. Membr. Transp. 9: 1 – 69.

    CAS  Google Scholar 

  130. Robinson, J. R. 1975. Colloid osmotic pressure as a cause of pathological swelling of cells. In: Pathobiology of Cell Membranes, Volume 1. B. F. Trump and A. U. Arstila, eds. Academic Press, New York. pp. 173 – 198.

    Google Scholar 

  131. Darrow, D. C., and H. Yannet. 1935. The changes in the distribution of body water accompanying increase and decrease in extracellular electrolyte. J. Clin. Invest. 14: 266 – 275.

    PubMed  CAS  Google Scholar 

  132. Robinson, J. R. 1954. Metabolism of intracellular water. Physiol. Rev. 40: 112 – 149.

    Google Scholar 

  133. Robinson, J. R. 1965. Water regulation in mammalian cells. Symp. Soc. Exp. Biol. 19: 237 – 258.

    PubMed  CAS  Google Scholar 

  134. Dydnska, M., and D. R. Wilkie. 1963. The osmotic properties of striated muscle fibres in hypertonic solutions. J. Physiol. (London) 169: 312 – 329.

    Google Scholar 

  135. Ponder, E. 1948. Hemolysis and Related Phenomena, 1st ed. Grune amp; Stratton, New York.

    Google Scholar 

  136. Dick, D. A. T. 1971. Water movements in cells. In: Membranes and Ion Transport, Volume 3. E. E. Bittar, ed. Wiley-Inter- science, New York.

    Google Scholar 

  137. Whittam, R. 1964. Transport and Diffusion in Red Blood Cells. Arnold, London, and Williams & Wilkins, Baltimore.

    Google Scholar 

  138. Gary-Bobo, C. M., and A. K. Solomon. 1968. Properties of hemoglobin solutions in red cells. J. Gen. Physiol. 52: 825 – 853.

    PubMed  CAS  Google Scholar 

  139. Freedman, J. C., and J. F. Hoffman. 1979. Ionic and osmotic equilibria of human red cells treated with nystatin. J. Gen. Physiol. 74: 157 – 185.

    PubMed  CAS  Google Scholar 

  140. Hladky, S. B., and T. J. Rink. 1978. Osmotic behaviour of human red blood cells: An interpretation in terms of negative intracellular fluid pressure. J. Physiol. (London) 274: 437 – 446.

    CAS  Google Scholar 

  141. Dick, D. A. T. 1966. Cell Water. Butterworths, London.

    Google Scholar 

  142. Robinson, J. R. 1971. Control of water content of non-metabolizing kidney slices by sodium chloride and polyethylene glycol (PEG 6000). J. Physiol. (London) 213: 227 - 234.

    CAS  Google Scholar 

  143. Robinson, J. R. 1978. Control of water content of respiring kidney slices by sodium chloride and polyethylene glycol. J. Physiol. (London) 282: 285 – 294.

    CAS  Google Scholar 

  144. González, E., P. Carpi-Medina, and G. Whittembury. 1982. Cell osmotic water permeability of isolated rabbit proximal straight tubules. Am. J. Physiol. 242. F321 – F330.

    PubMed  Google Scholar 

  145. Persson, B. E., and K. R. Spring. 1982. Gallbladder epithelial cell hydraulic water permeability and volume regulation. J. Gen. Physiol. 79: 481 – 505.

    PubMed  CAS  Google Scholar 

  146. Kregenow, F. M. 1981. Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media. Annu. Rev. Physiol. 43: 493 – 505.

    PubMed  CAS  Google Scholar 

  147. Hendil, K. B., and E. K. Hoffmann. 1974. Cell volume regulation in Ehrlich ascites tumour cells. J. Cell. Physiol. 84: 115 – 126.

    PubMed  CAS  Google Scholar 

  148. Hoffmann, E. K. 1978. Regulation of cell volume by selective changes in the leak permeabilities of Ehrlich ascites tumor cells. In: Osmotic and Volume Regulation. C. B. Jorgensen and E. Skadhauge, eds. Munsksgaard, Copenhagen, pp. 397 – 417.

    Google Scholar 

  149. Ben-Sasson, S., R. Shaviv, Z. Bentwich, S. A. Shaviv, and F. Doljanski. 1975. Osmotic behavior of normal and leukemic lymphocytes. Blood 46: 891 – 899.

    PubMed  CAS  Google Scholar 

  150. Buckhold-Shank, B., H. M. Rosenberg, and C. Horowitz. 1973. Ionic basis of volume regulation in mammalian cells following osmotic shock. J. Cell. Physiol. 82: 257 – 266.

    Google Scholar 

  151. Bui, A. H., and J. S. Wiley, 1981. Cation fluxes and volume regulation by human lymphocytes. J. Cell. Physiol. 108: 47 – 54.

    PubMed  CAS  Google Scholar 

  152. Cheung, R. K., S. Grinstein, H.-M. Dosch, and E. W. Gelfand. 1982. Volume regulation by human lymphocytes: Characteristics of the ionic basis for regulatory volume decrease. J. Cell. Physiol. 112: 189 – 196.

    PubMed  CAS  Google Scholar 

  153. Grinstein, S., A. Dupre, and A. Rothstein. 1982. Volume regulation by human lymphocytes. J. Gen. Physiol. 79: 849 – 868.

    PubMed  CAS  Google Scholar 

  154. Rosenberg, H. M., B. Buckhold-Shank, and E. C. Gregg. 1972. Volume change of mammalian cells subjected to hypotonic solutions in vitro: Evidence for the requirement of a sodium pump for the shrinkage phase. J. Cell. Physiol. 80: 23 – 32.

    PubMed  CAS  Google Scholar 

  155. Roti Roti, L. W., and A. Rothstein. 1973. Adaptation of mouse leukemic cells (L5178Y) to anisosmotic media. Exp. Cell Res. 79: 295 – 310.

    PubMed  CAS  Google Scholar 

  156. Bedford, J.J. 1981. The role of free amino acids in the regulation of cellular volume. In: Epithelial Ion and Water Transport. A. D. C. Macknight and J. P. Leader, eds. Raven Press, New York. pp. 319 – 327.

    Google Scholar 

  157. Florkin, M. 1962. Regulation anisosmotique extracellulaire regulation isosmotique intercellulaire et euryhalinite. Ann. Soc. Zool. Belg. 92: 183 – 186.

    Google Scholar 

  158. Forster, R. P., and L. Goldstein. 1979. Amino acids and cell volume regulation. Yale J. Biol. Med. 52: 497 – 515.

    PubMed  CAS  Google Scholar 

  159. Gilíes, R. 1975. Mechanisms of iono and osmoregulation. In: Marine Ecology, Volume 11, Part 1. O. Kinne, ed. Wiley-Inter- science, New York. pp. 259 – 347.

    Google Scholar 

  160. Schoffeniels, E. 1967. Cellular Aspects of Membrane Permeability. Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  161. Thurston, J. H., R. E. Hauhart, and E. F. Naccarato. 1981. Taurine: Possible role in osmotic regulation of mammalian heart. Science 214: 1373 – 1374.

    PubMed  CAS  Google Scholar 

  162. Kregenow, F. M. 1971. The response of duck erythrocytes to nonhemolytic hypotonic media: Evidence for a volume-controlling mechanism. J. Gen. Physiol. 58: 372 – 395.

    PubMed  CAS  Google Scholar 

  163. Kregenow, F. M. 1974. Functional separation of the Na-K exchange pump from the volume controlling mechanism in enlarged duck red cells. J. Gen. Physiol 64: 393 – 412.

    PubMed  CAS  Google Scholar 

  164. Cala, P. M. 1980. Volume regulation by Amphiuma red blood cells: The membrane potential and its implications regarding the nature of the ion-flux pathways. J. Gen. Physiol. 76: 683 – 708.

    PubMed  CAS  Google Scholar 

  165. Parker, J. C. 1978. Sodium and calcium movements in dog red blood cells. J. Gen. Physiol. 71: 1 – 17.

    PubMed  CAS  Google Scholar 

  166. Parker, J. C. 1979. Active and passive Ca movement in dog red blood cells and resealed ghosts. Am. J. Physiol. 237: C10 – C16.

    PubMed  CAS  Google Scholar 

  167. Parker, J. C., and J. R. Harper. 1980. Calcium movements in dog red blood cells. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen, pp. 274 – 282.

    Google Scholar 

  168. Ussing, H. H. 1982. Volume regulation of frog skin epithelium. Acta Physiol. Scand. 114: 363 – 371.

    PubMed  CAS  Google Scholar 

  169. Davis, C. W., and A. L. Finn. 1982. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia. Science 216: 525 – 527.

    PubMed  CAS  Google Scholar 

  170. Paillard, M., F. Leviel, and J. P. Gardin. 1979. Regulation of cell volume in separated renal tubules incubated in hypotonic medium. Am. J. Physiol. 216: F226 – F231.

    Google Scholar 

  171. Hughes, P. M., and A. D. C. Macknight. 1976. The regulation of cellular volume in renal cortical slices incubated in hypo-osmotic medium. J. Physiol. (London) 257: 137 – 154.

    CAS  Google Scholar 

  172. Linshaw, M. A., and J. J. Grantham. 1980. Effect of collagenase and ouabain on renal cell volume in hypotonic media. Am. J. Physiol. 238: F491 – F498.

    PubMed  CAS  Google Scholar 

  173. Yannet, H. 1940. Changes in the brain resulting from depletion of extracellular electrolytes. Am. J. Physiol. 128: 683 – 689.

    CAS  Google Scholar 

  174. Arieff, A. I., and R. Guisado. 1976. Effects on the central nervous system of hypernatremic and hyponatremic states. Kidney Int. 10: 104 – 116.

    PubMed  CAS  Google Scholar 

  175. Arieff, A. I., R. Guisado, and V. C. Lazarowitz. 1977. Pathophysiology of hyperosmolar states. In: Disturbances in Body Fluid Osmolality. T. E. Andreoli, J. J. Grantham, and F. C. Rector, Jr., eds. American Physiological Society, Washington, D.C. pp. 227 – 250.

    Google Scholar 

  176. Fishman, R. A. 1974. Cell volume, pumps and neurologic function: Brain’s adaptation to osmotic stress. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 53: 159 – 171.

    PubMed  CAS  Google Scholar 

  177. Pollock, A. S., and A. I. Arieff. 1980. Abnormalities of cell volume regulation and their functional consequences. Am. J. Physiol. 239: F195 – F205.

    PubMed  CAS  Google Scholar 

  178. Arieff, A. I., F. Llach, and S. G. Massry. 1976. Neurological manifestations and morbidity of hyponatremia: Correlation of brain water and electrolytes. Medicine (Baltimore) 55: 121 – 129.

    CAS  Google Scholar 

  179. Fishman, R. A., M. Reiner, and P. H Chan. 1977. Metabolic changes associated with iso-osmotic regulation in brain cortex slices. J. Neurochem. 28: 1061 – 1067.

    PubMed  CAS  Google Scholar 

  180. Hertz, L., and A. Schousboe. 1975. Ion and energy metabolism of the brain at the cellular level. Int. Rev. Neurobiol. 18: 141 – 211.

    PubMed  CAS  Google Scholar 

  181. Ames, A., III, J. B. Isom, and F. B. Nesbett. 1965. Effects of osmotic changes on water and electrolytes in nervous tissue. J. Physiol. (London) 117: 246 – 262.

    Google Scholar 

  182. Rymer, M. M., and R. A. Fishman. 1973. Protective adaptation of brain to water intoxication. Arch. Neurol. (Chicago) 28: 49 – 54.

    CAS  Google Scholar 

  183. Dila, C. J., and H. M. Pappius. 1972. Cerebral water and electrolytes: An experimental model of inappropriate secretion of antidiuretic hormone. Arch. Neurol. (Chicago) 29: 85 – 90.

    Google Scholar 

  184. Sotos, J. R., P. R. Dodge, P. Meara, and N. B. Talbot. 1960. Studies in experimental hypertonicity. 1. Pathogenesis of the clinical syndrome, biochemical abnormalities and cause of death. Pediatrics 26: 925 – 938.

    Google Scholar 

  185. Hempling, H. G., S. Thompson, and A. Dupre. 1978. Osmotic properties of human lymphocytes. J. Cell. Physiol. 93: 293 – 302.

    Google Scholar 

  186. Poznansky, M., and A. K. Solomon. 1972. Effect of cell volume on potassium transport in human red cells. Biochim. Biophys. Acta 274: 111 – 118.

    PubMed  CAS  Google Scholar 

  187. Kregenow, F. M. 1971. The response of duck erythrocytes to hypertonic media: Further evidence for a volume-controlling mechanism. J. Gen. Physiol. 58: 396 – 412.

    PubMed  CAS  Google Scholar 

  188. Kregenow, F. M., D. E. Robbie, and J. Orloff. 1976. Effect of norepinephrine and hypertonicity on K influx and cyclic AMP in duck erythrocytes. Am. J. Physiol. 231: 306 – 312.

    PubMed  CAS  Google Scholar 

  189. Schmidt, W. F., III, and T. J. McManus. 1977. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions. J. Gen. Physiol. 70: 59 – 79.

    PubMed  CAS  Google Scholar 

  190. Schmidt, W. F., III, and T. J. McManus. 1977. Ouabain-insensitive salt and water movements in duck red cells. III. The role of chloride in the volume response. J. Gen. Physiol. 70: 99 – 121.

    PubMed  CAS  Google Scholar 

  191. Schmidt, W. F., III, and T. J. McManus. 1977. Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport. J. Gen. Physiol. 70: 81 – 97.

    PubMed  CAS  Google Scholar 

  192. Haas, M., W. F. Schmidt, III, and T. J. McManus. 1982. Catecholamine-stimulated ion transport in duck red cells: Gradient effects in electrically neutral (Na + K + 2Cl) co-transport. J. Gen. Physiol. 80: 125 – 147.

    PubMed  CAS  Google Scholar 

  193. Kregenow, F. M. 1973. The response of duck erythrocyte to norepinephrine and an elevated extracellular potassium. J. Gen. Physiol. 216: 527 – 527.

    Google Scholar 

  194. Ericson, A. C., and K. R. Spring. 1982. Volume regulate on by Necturus gallbladder: Apical Na + -H+ and C1− HCO3 − exchange. Am. J. Physiol. 243: C146 – C150.

    PubMed  CAS  Google Scholar 

  195. Fisher, R. S., B. E. Persson, and K. R. Spring. 1981. Epithelial cell volume regulation: Bicarbonate dependence. Science 214: 1357 – 1358.

    PubMed  CAS  Google Scholar 

  196. Weinman, S. A., and L. Reuss. 1982. Na+-H+ exchange at the apical membrane of Necturus gallbladder: Extracellular and intracellular pH studies. J. Gen. Physiol. 80: 299 – 321.

    PubMed  CAS  Google Scholar 

  197. Thurston, J. H., R. E. Hauhart, and J. A. Dirgo. 1980. Taurine: A role in osmotic regulation of mammalian brain and possible clinical significance. Life Sci. 26: 1561 ’ 1568.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Macknight, A.D.C., Leaf, A. (1986). Regulation of Cellular Volume. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2097-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2097-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9242-5

  • Online ISBN: 978-1-4613-2097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics