The Anatomy of Biological Interfaces

  • J. David Robertson


It is generally recognized that biological membranes have a common, basic lipid bilayer structure(1–5) which contains external, internal, and transmembrane proteins(6) with chemical asymmetry as a fundamental feature(7,8); the asymmetry involves both lipids and proteins (see Rothman and Lenard(9) and Robertson(10,11) for recent reviews). Certain glycoproteins such as glycophorin in erythrocyte membranes(12,13) are arranged with a protein moiety in the internal leaflet connected to a glycoprotein moiety in the external leaflet.(14) In the case of glycophorin, the internal and external parts are connected by a stretch of hydrophobic amino acid residues traversing the bilayer probably as an α helix.


Lipid Bilayer Unit Membrane Purple Membrane Intramembrane Particle Lens Fiber Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robertson, J. D. 1959. The ultrastructure of cell membranes and their derivatives. Biochem. Soc. Symp. 16: 3–43.PubMedGoogle Scholar
  2. la.
    Robertson, J. David. 1957. New observations o the ultrastructure of the membranes of frog peripheral nerve fibers. J. Biophys. amp; Biochem. Cytol. 3: 1043–1048.Google Scholar
  3. 2.
    Robertson, J. D. 1960. The molecular biology of cell membranes. In: Molecular Biology. D. Nachmansohn, ed. Academic Press, New York. pp. 87–151.Google Scholar
  4. 3.
    Robertson, J. D. 1966. Granulo-fibrillar and globular substructure in unit membranes. Ann. N.Y. Acad. Sci. 137: 421–440.PubMedGoogle Scholar
  5. 4.
    Robertson, J. D. 1975. Membrane models: Theoretical and real. In: The Nervous System, Volume I. D. B. Tower, ed. Raven Press, New York. pp. 43–58.Google Scholar
  6. 5.
    Stoeckenius, W., and D. M. Engleman. 1969. Current models for the structure of biological membranes. J. Cell Biol. 42: 613–646.PubMedGoogle Scholar
  7. 6.
    Steck,T. L., G.Fairbanks, and D.F.H.Wallach. 1971. Disposition of the major proteins in the isolated erythrocyte membrane: Proteolytic dissection. Biochemistry 10: 2617–2624.PubMedGoogle Scholar
  8. 7.
    Singer, S. J. 1974. The molecular organization of membranes. Annu. Rev. Biochem. 43: 805–833.PubMedGoogle Scholar
  9. 8.
    Singer, S. J., and G. L. Nicholson. 1972. The fluid mosaic model of the structure of cell membranes. Science 175: 720 - 731.PubMedGoogle Scholar
  10. 9.
    Rothman, J. E., and J. Lenard. 1977. Membrane asymmetry. Science 195: 743–753.PubMedGoogle Scholar
  11. 10.
    Robertson, J. D. 1980. Discovery in cell biology: Membrane structure: An historical review. J. Celj Biol. 91: 189s–204s.Google Scholar
  12. 11.
    Robertson, J. D. 1981. A review of membrane structure with perspectives on certain transmembrane channels. In: Demyelinating Disease and Basic and Clinical Electrophysiology. S. G. Waxman and J. M. Ritchie, eds. Raven Press, New York, pp. 419–477.Google Scholar
  13. 12.
    Segrest, J. P., R. L. Jackson, and V. T. Marchesi. 1972. Red cell membrane glycoprotein: Amino acid sequence of an intra- membranous region. Biochem. Biophys. Res. Commun. 49: 964–969.PubMedGoogle Scholar
  14. 13.
    Tosteson, M. T., andD. C. Tosteson. 1977. Glycophorin spans the bilayer. Biophys. J. 17: 86a.Google Scholar
  15. 14.
    Bloj, B., and D. B. Silversmit. 1976. Asymmetry and trans position rates of phosphatidylcholine in rat erythrocyte ghosts. Biochemistry 15: 1277–1283.PubMedGoogle Scholar
  16. 15.
    Branton, D. 1971. Freeze-etching studies of membrane structure. Philos. Trans. R. Soc. Lond. B. 261: 133–138.Google Scholar
  17. 16.
    Bretscher, M. S. 1972. Phosphatidylethanol amino: Differential labelling in intact cells and cell ghosts of human erythrocytes by a membrane impermeable reagent. J. Mol. Biol. 71: 523–528.PubMedGoogle Scholar
  18. 17.
    Brightman, M. W., and T. S. Reese. 1969. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40: 648–677.PubMedGoogle Scholar
  19. 17a.
    Gordesky, S. E., and G. V. Marinetti. 1973. The asymmetric arrangement of PL’s in human erythrocyte membranes. Biochem. Biophys. Res. Commun. 50: 1027–1031.PubMedGoogle Scholar
  20. 18.
    Renooij, W., L. M. G. VanGolde, R. F. A. Zwaal, andL. L. M. Van Deenen. 1976. Topological asymmetry of phospholipid metabolism in rat erythrocyte membranes. J. Biochem. (Tokyo) 61: 53–58.Google Scholar
  21. 19.
    Rothman, J. E., andE. P. Kennedy. 1977. Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium. J. Mol. Biol. 110: 603–618.PubMedGoogle Scholar
  22. 20.
    Verkleij, A. J., R. F. A. Zwaal, B. Roelofsen, P. comfurius, D. Kastellijn, and L. L. M. Van Deenen. 1973. The asymmetric distribution of phospholipids in the human red cell membrane: A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 323: 178–193.PubMedGoogle Scholar
  23. 21.
    Fisher, K. A. 1975. “Half” membrane enrichment: Verification by electron microscopy. Science 190:983–984.PubMedGoogle Scholar
  24. 22.
    Fisher, K. A. 1976. Autoradiography of membrane “halves” 3H- cholesterol labeled erythrocytes. J. Cell Biol. 70: 218a.Google Scholar
  25. 23.
    Rand, R. P., and V. Luzzati. 1968. X-ray diffraction study in water of lipids extracted from human erythrocytes, the position of cholesterol in the lipid lamellae. Biophys. J. 8: 125–137.PubMedGoogle Scholar
  26. 24.
    Mateu, L., V. Luzzati, Y. London, R. M. Gould, F. G. A. Vossenberg, and J. Olive. 1973. X-ray diffraction and electron microscope study of the interactions of myelin components: The structure of a lamellar phase with a 150 to 180 A repeat distance containing basic proteins and acidic lipids. J. Mol. Biol. 75: 697–709.PubMedGoogle Scholar
  27. 25.
    Caspar, D. L. D., and D. A. Kirschner. 1971. Myelin membrane structure at 10 A resolution. Nature New Biol. 231: 46–52.PubMedGoogle Scholar
  28. 26.
    Folch, J., and M. Lees. 1951. Proteolipids, a new type of tissue lipoproteins. J. Biol. Chem. 191: 807–817.PubMedGoogle Scholar
  29. 27.
    Folch-Pi, J., and P.J. Stoffyn. 1972. Proteolipids from membrane systems. Ann. N.Y. Acad. Sci. 195: 86–107.PubMedGoogle Scholar
  30. 28.
    Eylar, E. H. 1970. Amino acid sequence of the basic protein of the myelin membrane. Proc. Natl. Acad. Sci. USA 67: 1425–1431.PubMedGoogle Scholar
  31. 29.
    Eylar, E. H., J. Salk, G. C. Beveridge, and L. V. Braun. 1969. Experimental allergic encephalomyelitis, an encephalitogenic basic protein from bovine myelin. Arch. Biochem. Biophys. 132: 34–48.PubMedGoogle Scholar
  32. 30.
    Gruener, W., and R. G. Peterson. 1977. Positional relationships of peripheral nervous system myelin protein. Tex. Soc. Electron Microsc. News. 8: 35–36.Google Scholar
  33. 31.
    London, Y., R. O. Demel, W. S. M. Geurts von Kessel, P. Fahler, and I. Van Deener. 1974. The interaction of the “Folch- Lees” protein with lipids at the air/water interface. Biochim. Biophys. Acta 382: 69–84.Google Scholar
  34. 32.
    Hall, J. E., and R. Latorre. 1975. Nonactin-K+ complex as a probe for membrane asymmetry. Biophys. J. 15: 99.Google Scholar
  35. 33.
    Kornberg, R. D., and H. M. McConnell. 1971. Lateral diffusion of phospholipids in a vesicle membrane. Proc. Natl. Acad. Sci. USA 68: 2564–2568.PubMedGoogle Scholar
  36. 34.
    Sherwood, D., and M. Montai. 1975. Transmembrane lipid migration in planar asymmetric bilayer membranes. Biochem. J. 15: 417–434.Google Scholar
  37. 35.
    McNamee, M. G., and H. M. McConnell. 1973. Transmembrane particles and PL flip-flop in excitable membrane vesicles. Biochemistry 12: 2951–2958.PubMedGoogle Scholar
  38. 36.
    Luzzati, V., and F. Husson. 1962. The structure of the liquid-crystalline phases of lipid-water systems. J. Cell Biol. 12: 207–219.PubMedGoogle Scholar
  39. 37.
    Ranck, J. L., L. Mateu, D. M. Sadler, G. Tandien, T. Gulik- Krzywicki, and V. Luzzati. 1974. Order and disorder conformational transitions of the hydrocarbon chains of lipids. J. Mol. Biol. 85: 277–289.Google Scholar
  40. 38.
    Kornberg, R. D., andH. M. McConnell. 1971. Inside and outside transitions of phospholipids in vesicle membranes. Biochemistry 10: 1111–1120.PubMedGoogle Scholar
  41. 39.
    Overton, E. 1899. Ueber die Allgemain osmotischen Eigeuschat- ten dor zelle. Naturforscheuse Gesellschaft. Zurich. Vier- teldarschrift. 44: 88–135.Google Scholar
  42. 40.
    Langmuir, J. 1917. The constitution and fundamental properties of solids and liquids. II. Liquids. J. Am. Chem. Soc. 37: 1848–1905.Google Scholar
  43. 41.
    Harkins, W. D., E. C. H. Davies, and F. L. Clark. 1917. The orientation of molecules in the surfaces, solubility, absorption, emulsification, molecular association, and the effect of acids and bases on interfacial tension (surface energy VI). J. Am. Chem. Soc. 39: 541–596.Google Scholar
  44. 42.
    Gorter, E., and R. Grendel. 1925. On bimolecular layers of lipid on the chromocytes of the blood. J. Exp. Med. 41: 439–443.PubMedGoogle Scholar
  45. 43.
    Danielli, J. F., and H. A. Davson. 1935. A contribution to the theory of permeability of thin films. J. Cell. Comp. Physiol. 5: 495–508.Google Scholar
  46. 44.
    Korn, E. D. 1966. Structure of biological membranes. Science 153: 1491–1498.PubMedGoogle Scholar
  47. 45.
    Lenard, J., and S. J. Singer. 1966. Protein conformation in cell membrane preparations as studied by optical rotatory dispersion and circular dischroism. Proc. Natl. Acad. Sci. USA 56: 1828–1835.PubMedGoogle Scholar
  48. 46.
    Benson, A. A. 1964. Plant membrane lipids. Annu. Rev. Plant Physiol 15: 1–16.Google Scholar
  49. 47.
    Benson, A. A. 1966. On the orientation of lipids in chloroplast and cell membranes. J. Am. Oil Chem. Soc. 43: 265–270.PubMedGoogle Scholar
  50. 48.
    Wallach, D. F. H., and P. H. Zahler. 1966. Protein conformations in cellular membranes. Proc. Natl. Acad. Sci. USA 56: 1552–1559.PubMedGoogle Scholar
  51. 49.
    Sjostrand, F. S. 1969. Morphological aspects of lipoprotein structures. In: Structural and Functional Aspects of Lipoprotein in Living Systems. E. Tria and A. M. Scanu, eds. Academic Press, New York. pp. 73–139.Google Scholar
  52. 50.
    Hubbell, W. L., and H. M. McConnell. 1968. Spin label studies of the excitable membranes of nerve and muscle. Proc. Natl. Acad. Sci. USA 61: 12–16.PubMedGoogle Scholar
  53. 51.
    Steim, J. M., N. E. Tourtellotte, J. C. McElhaney, and R. L. Rader. 1969. Calorimetric evidence for the liquid crystalline state of lipids in a biomembrane. Proc. Natl. Acad. Sci. USA 63: 104–109.PubMedGoogle Scholar
  54. 52.
    Engelman, D. M. 1971. Lipid bilayer structure in the membrane of Mycoplasma laidlawii. J. Mol. Biol. 58: 153–165.PubMedGoogle Scholar
  55. 53.
    Finean, J. B. 1969. Biophysical contributions to membrane structure. Q. Rev. Biophys. 21: 1–23.Google Scholar
  56. 54.
    Finean, J. B., R. Coleman, W. G. Green, and A. R. Limbrick. 1966. Low angle X-ray diffraction and electron microscope studies of isolated cell membranes. J. Cell Sci. 2: 287–296.Google Scholar
  57. 55.
    Finean, J. B., R. Coleman, S. Knutton, and A. R. Limbrick. 1968. Structural studies of cell membrane preparations. J. Gen. Physiol. 51: 19s–25s.PubMedGoogle Scholar
  58. 56.
    Limbrick, A. R., and J. B. Finean. 1970. X-ray diffraction and electron microscopic studies of the brush border membrane of guinea pig intestinal epithelial cells. J. Cell Sci. 7: 373–386.PubMedGoogle Scholar
  59. 57.
    Chapman, D., and H. Urbina. 1971. Phase transitions and bilayer structure of Mycoplasma laidlawii B. FEBS Lett. 12: 169–172.PubMedGoogle Scholar
  60. 58.
    Hendler, R. W. 1971. Biological membrane ultrastructure. Physiol. Rev. 51: 66–97.PubMedGoogle Scholar
  61. 59.
    Henderson, R., and P. N. T. Unwin. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature (London) 257: 28–32.Google Scholar
  62. 60.
    Unwin, P. N. T., and R. Henderson. 1975. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94: 425–440.PubMedGoogle Scholar
  63. 61.
    Stoeckenius, W., and W. H. Kunau. 1968. Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium. J. Cell Biol. 38: 337–357.Google Scholar
  64. 62.
    Stoeckenius, W., and D. Oesterhelt. 1973. Functions of a new photoreceptor membrane. Proc. Natl. Acad. Sci. USA 70: 2853–2857.PubMedGoogle Scholar
  65. 63.
    Stoeckenius, W., and R. Rowen. 1967. A morphological study of Halobacterium halobium and its lysis in media of low salt concentration. J. Cell Biol. 34: 365–393.PubMedGoogle Scholar
  66. 64.
    Racker, E., and W. Stoeckenius. 1974. Reconstitution of purple membrane vesicles catalyzing light driven proton uptake triphosphate formation. J. Biol. Chem. 249: 662–663.PubMedGoogle Scholar
  67. 65.
    Whiteley, N. M., and H. C. Berg. 1974. Amidination of the outer and inner surfaces of the human erythrocyte membrane. J. Mol. Biol. 87: 541–561.PubMedGoogle Scholar
  68. 66.
    Ruoho, A., and J. Kyte. 1974. Photoaffinity labeling of the oua- bain-binding site on (Na+ + K +) adenosinetriphosphatase. Proc. Natl. Acad. Sci. USA 71: 2352–2356.PubMedGoogle Scholar
  69. 67.
    Brown, J. C., and R. C. Hunt. 1976. Identification of a high molecular weight transmembrane protein in mouse L cells. In: Membranes and Neoplasia: New Approaches and Strategies. V. T. Marchesi, ed. Liss, New York. pp. 179–188.Google Scholar
  70. 68.
    Marchesi, V. T., T. W. Tillack, R. L. Jackson, J. P. Segrest, and R. E. Scott. 1972. Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane. Proc. Natl. Acad. Sci. USA 69: 1445–1449.PubMedGoogle Scholar
  71. 69.
    Bretscher, M.S. 1973. Membrane structure: Some general principles. Science 181: 622–629.PubMedGoogle Scholar
  72. 70.
    Strittmatter, P., M. J. Roger, and L. Spatz. 1972. The binding of cytochrome b5 to liver microsomes. J. Biol. Chem. 247: 7188–7194.PubMedGoogle Scholar
  73. 71.
    Robertson, J. D. 1960. The molecular structure and contact relationships of cell membranes. In: Progress in Biophysics. B. Katz and J. A. V. Butler, eds. Pergamon Press, Elmsford, N.Y. pp. 343–418.Google Scholar
  74. 72.
    Goodenough, D. A. 1976. Channels traversing two junctional membranes and intervening gap. J. Cell Biol. 71: 334–335.Google Scholar
  75. 73.
    Goodenough, D. A. 1976. In vitro formation of gap junction vesicles. J. Cell Biol. 71: 220–231.Google Scholar
  76. 74.
    Evans, E. A. 1973. New membrane concept applied to the analysis of fluid shear and micropipette-deformed red blood cells. Biophys. J. 13: 941.PubMedGoogle Scholar
  77. 75.
    LaCelle, P. 1975. Elastic behavior of spectrin-phospholipid membranes. Biophys. J. 15: 210a.Google Scholar
  78. 76.
    Robertson, J. D., W. Schreil, and M. Reedy. 1980. Halobacterium halobium: An electron microscopic study. J. Ul- trastruct. Res. 80: 148–162.Google Scholar
  79. 77.
    Elgsaeter, A., and D. Branton. 1974. Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal. J. Cell Biol. 63: 1018–1030.PubMedGoogle Scholar
  80. 77a.
    Marchesi, V. T., and E. Steers. 1968. Selective solubilization of a protein component of red cell membranes. Science 159: 203–204.PubMedGoogle Scholar
  81. 78.
    Singer, S.J. 1974. The dynamics of membrane components. In: Electron Microscopy, Volume II. J. V. Sanders and D. J. Good- child, eds. Aust. Acad. Sci., Canberra, pp. 186–187.Google Scholar
  82. 79.
    Roehlich, P. 1975. Membrane-associated actin filaments in the cortical cytoplasm of the rat mast cell. Exp. Cell Res. 93: 293–398.Google Scholar
  83. 80.
    Yamada, K. M., B. S. Spooner, and N. K. Wessells. 1971. Ultrastructure and function of growth cones and axon of cultured nerve cells. J. Cell Biol. 49: 614–635.PubMedGoogle Scholar
  84. 81.
    Ottolenghi, A. 1973. Preparation and characterization of mouse intestinal phospholipase. Lipids 8: 415–425.PubMedGoogle Scholar
  85. 82.
    Roelofsen, B., R. F. A. Zwaal, P. Comfurius, C. B. Woodward, and L. L. M. Van Deenen. 1971. Action of pure phospholipase A2 and phospholipase C on human erythrocytes and ghosts. Biochim. Biophys. Acta 241: 925–929.PubMedGoogle Scholar
  86. 83.
    Limbrick, A. R., and S. Knutton. 1975. The perturbation of the human erythrocyte membrane by phospholipase C. J. Cell Sci. 19: 341–355.PubMedGoogle Scholar
  87. 84.
    Henderson, R. 1975. The structure of the purple membrane for Halobacterium halobium: Analysis of the X-ray diffraction pattern. J. Mol. Biol. 93: 123–138.PubMedGoogle Scholar
  88. 85.
    Robertson, J. D., W. Schreil, and M. Reedy. 1982. Halobacterium halobium: An electron microscopic study. J. Ul- trastruct. Res. 80: 148–162.Google Scholar
  89. 86.
    Miljanich, G. P., P. P. Nemes, D. L. White, and E. A. Dratz. 1981. The asymmetric transmembrane distribution of phos- phatidylethanolamine, phosphatidylserine and fatty acids of the bovine retinal rod outer segment disk membrane. J. Membr. Biol. 60: 249–255.PubMedGoogle Scholar
  90. 87.
    Robertson, J. D. 1959. Preliminary observations on the ultrastructure of nodes of Ranvier. Z. Zellforsch. Mikrosk. Anat. 50: 553–560.Google Scholar
  91. 88.
    Robertson, J. D. 1958. The ultrastructure of Schmidt-Lanter- mann clefts and related shearing defects of the myelin sheath. J. Biophys. Biochem. Cytol. 4: 39–46.PubMedGoogle Scholar
  92. 89.
    Robertson, J. D. 1958. Structural alterations in nerve fibers produced by hypotonic and hypertonic solutions. J. Biophys. Biochem. Cytol. 4: 349–364.PubMedGoogle Scholar
  93. 90.
    Robertson, J. D. 1961. The unit membrane. In: Electron Microscopy in Anatomy. J. D. Boyd, F. R. Johnson, and J. D. Lever, eds. Arnold, London, pp. 74–99.Google Scholar
  94. 91.
    Farquhar, M. G., and G. E. Palade. 1964. Functional organization of amphibian skin. Proc. Natl. Acad. Sci. USA 51: 569–577.PubMedGoogle Scholar
  95. 92.
    Farquhar, M. G., and G. E. Palade. 1965. Cell junctions in amphibian skin. J. Cell Biol. 26: 263–291.PubMedGoogle Scholar
  96. 93.
    Pappas, G. D., andM. V. L. Bennett. 1966. Specialized junctions involved in electrical transmission between neurons. Ann. N.Y. Acad. Sci. 137: 495–508.PubMedGoogle Scholar
  97. 94.
    Revel, J. P., and M. J. Karnovsky. 1967. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33: C7–C12.PubMedGoogle Scholar
  98. 95.
    Barr, L., M. M. Dewey, and W. Berger. 1965. Propagation of action potentials and the structure of the nexus in cardiac muscle. J. Gen. Physiol. 48: 797–823.PubMedGoogle Scholar
  99. 96.
    Benedetti, E. L., and P. Emmelot. 1965. Electron microscopic observations on negatively stained plasma membranes isolated from rat liver. J. Cell Biol. 26: 299–304.PubMedGoogle Scholar
  100. 97.
    Benedetti, E. L., and P. Emmelot. 1968. Hexagonal array of subunits in tight junctions separated from isolated rat liver plasma membranes. J. Cell Biol. 38: 15–24.PubMedGoogle Scholar
  101. 98.
    Bennett, M. V. L., and J. P. Trinkaus. 1970. Electrical coupling between embryonic cells by way of extracellular space and specialized junctions. J. Cell Biol. 44: 592–610.PubMedGoogle Scholar
  102. 99.
    Lowenstein, W. 1973. Membrane junctions in growth and differentiation. Fed. Proc. 30: 60–64.Google Scholar
  103. 100.
    Fletcher, W. F., and J. D. Robertson. 1975. Assembly of an “enclosed gap junction” by granulosa cells in the developing ovarian follicles of sexually immature rats. J. Cell Biol. 67: 116a.Google Scholar
  104. 101.
    Simionescu, M., N. Simionescu, and G. E. Palade. 1975. Segmental differentiations of cell junctions in the vascular epithelium. J. Cell Biol. 67: 863–885.PubMedGoogle Scholar
  105. 102.
    Robertson, J. D. 1963. The occurrence of a subunit of pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brains. J. Cell Biol. 19: 201–222.PubMedGoogle Scholar
  106. 103.
    Robertson, J. D., T. S. Bodenheimer, and D. E. Stage. 1963. The ultrastructure of Mauthner cell synapses and nodes in goldfish brains. J. Cell Biol. 19: 159–199.PubMedGoogle Scholar
  107. 104.
    Dewey, M. M., and L. Barr. 1962. Intercellular connection between smooth muscle cells: The nexus. Science 137: 670–672.PubMedGoogle Scholar
  108. 105.
    Ito, S., E. Sato, and W. R. Lowenstein. 1975. Studies on the formation of a permeable cell membrane. II. Evolving junctional conductance and junctional insulation. J. Membr. Biol. 19: 338–356.Google Scholar
  109. 106.
    Ito, S., E. Sato, and W. R. Lowenstein. 1975. Studies on the formation of a permeable cell membrane junction under various conditions of membrane contact. I. Effects of colchicine, cyto- chalasin B, dinitrophenol. J. Membr. Biol. 19: 305–338.Google Scholar
  110. 107.
    Johnson, R., M. Hammer, J. Sheridan, and J. P. Revel. 1974. Gap junction formation between reaggregated Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA 71: 4536–4540.PubMedGoogle Scholar
  111. 108.
    Decker, R. S., andD. S. Friend. 1974. Assembly of gap junctions during amphibian neurulation. J. Cell Biol. 62: 32–47.PubMedGoogle Scholar
  112. 109.
    DePetris, S., and M. C. Raff. 1972. Distribution of immunoglobuline on the surface of mouse lymphoid cells as determined by immunoferritin electron microscopy: Antibody-induced, temperature dependent redistribution and its implications for membrane structure. Eur. J. Immunol. 2: 523–540.Google Scholar
  113. 110.
    Rosenbluth, J. Z., T. E. Ukena, H. H. Yin, R. D. Berlin, and M. J. Karnovsky. 1973. A comparative evaluation of the redistribution of concanavalin A binding sites on the surfaces of normal, virally-transformed and protease-treated fibroblasts. Proc. Natl. Acad. Sci. USA 70: 1625–1629.Google Scholar
  114. 111.
    Bennett, M. V. L. 1973. Function of electrotonic junctions in embryonic and adult tissues. Fed. Proc. 33: 65–75.Google Scholar
  115. 112.
    Gilula, N. B. 1974. Junctions between cells. In: Cell Communica¬tion. R. P. Cox, ed. Wiley, New York. pp. 1–29.Google Scholar
  116. 113.
    Robertson, J. D. 1953. Ultrastructure of two invertebrate synapses. Proc. Soc. Exp. Biol. Med. 82: 219–223.PubMedGoogle Scholar
  117. 114.
    Robertson, J. D. 1961. Ultrastructure of excitable membranes and the crayfish median giant synapse. Ann. N.Y. Acad. Sci. 94: 339–389.PubMedGoogle Scholar
  118. 115.
    Furshpan, E. J., and D. D. Potter. 1959. Transmission at the giant motor synapses of the crayfish. J. Physiol. (London) 145: 289–325.Google Scholar
  119. 116.
    Furshpan, E. J., and T. Furakawa. 1962. Intracellular and extra-cellular responses of the several regions of the Mauthner cell of the goldfish. J. Neurophysiol. 25: 732.PubMedGoogle Scholar
  120. 117.
    Dewey, M. M., and L. Barr. 1964. A study of the structure and distribution of the nexus. J. Cell Biol. 23: 553–585.PubMedGoogle Scholar
  121. 118.
    Sjostrand, F. S., and E. Anderssen. 1954. Electron microscopy of the interrelated discs of cardiac muscle tissue. Experientia 10: 369–370.PubMedGoogle Scholar
  122. 119.
    Sjostrand, F. S., E. Andersson-Cedergren, and M. M. Dewey. 1958. The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. J. Ultrastruct. Res. 1: 271–287.PubMedGoogle Scholar
  123. 120.
    Sheridan, J. D. 1973. Functional evaluation of low resistance junctions: Influence of cell shape and size. Am. Zool. 13: 1119–1128.Google Scholar
  124. 121.
    Robertson, J. D. 1966. Design principles of the unit membrane. In: Principles of Biomolecular Organization. G. E. W. Wolstenholme and M. O’Conner, eds. Churchill, London, pp. 357–408.Google Scholar
  125. 122.
    Blobel, G., and B. Dobberstein. 1975. Transfer of proteins across membranes. J. Cell Biol. 67: 835–851.PubMedGoogle Scholar
  126. 123.
    Goodenough, D. A., and W. Stoeckenius. 1972. The isolation of mouse hepatocyte gap junctions: Preliminary chemical charac-terization and X-ray diffraction. J. Cell Biol. 54: 646–656.PubMedGoogle Scholar
  127. 124.
    Dunia, I., K. Sen, E. L. Benedetti, A. Zweers, and H. Bloemendal. 1974. Isolation and protein patterns of eye lens fiber junctions. FEBS Lett. 45: 139–144.PubMedGoogle Scholar
  128. 125.
    Goodenough, D. A. 1974. Bulk isolation of mouse hepatocyte gap junctions: Characterization of the principal protein, connexin. J. Cell Biol. 61: 557–563.PubMedGoogle Scholar
  129. 126.
    Goodenough, D. A. 1975. Correlated X-ray electron microscopic and biochemical studies of gap junctions. Presentation at Neurosciences Research Program work session on gap junctions, Boston, April 7–8, 1975.Google Scholar
  130. 127.
    Gilula, N. B. 1974. Isolation of rat liver gap junctions and characteristics of the polypeptides. J. Cell Biol. 53: 111a.Google Scholar
  131. 128.
    Zampighi, G., S. A. Simon, J. D. Robertson, T. J. Mcintosh, and M. J. Costello. 1982. On the structural organization of isolated bovine lens fiber junctions. J. Cell Biol. 93: 175–189.PubMedGoogle Scholar
  132. 128a.
    Lo Woo-Kuen, and Clifford V. Harding. 1984. Square arrays and their role in ridge formation in human lens fibers. J. Ultrastruc. Res. 86: 228–245.Google Scholar
  133. 129.
    Caspar, D. L. D., D. A. Goodenough, L. Makowski, and W. C. Phillips. 1977. Gap junction structures I. J. Cell Biol. 74: 605–628.PubMedGoogle Scholar
  134. 130.
    Zampighi, G., and J. D. Robertson. 1973. Fine structure of the synaptic discs separated from the goldfish medulla oblongata. J. Cell Biol. 56: 92–105.PubMedGoogle Scholar
  135. 130a.
    Zampighi, G., J. M. Corless, and J. D. Robertson. 1980. On Gap Junction Structure. J. Cell Biol. 86: 190–198.PubMedGoogle Scholar
  136. 131.
    Zampighi, G., and P. N. T. Unwin. 1979. Two forms of isolated gap junctions. J. Mol. Biol. 135: 451–464.PubMedGoogle Scholar
  137. 132.
    Unwin, P. N. T., and G. Zampighi. 1980. Structure of the junction between communicating cells. Nature (London) 283: 545–549.Google Scholar
  138. 133.
    McNutt, N. S., and R. S. Weinstein. 1973. Membrane ultrastruc¬ture at mammalian intercellular junctions. In: Progress in Bio¬physics and Molecular Biology. J. A. V. Butler andD. Noble, eds. Pergamon Press, Elmsford, N.Y. pp. 45–101.Google Scholar
  139. 134.
    Rollestan, F. S. 1974. Membrane-bound and free ribosomes. Subcell. Biochem. 3: 92–117.Google Scholar
  140. 135.
    Rae, J. L. 1979. The electrophysiology of the crystal line lens. Curr. Top. Eye Res. 1: 137–90.Google Scholar
  141. 136.
    Goodenough, D. A. 1979. Lens gap junctions: A structural hypothesis for nonregulated low-resistance intercellular pathways. Invest. Ophthalmol. Visual Sci. 18: 1104–1122.Google Scholar
  142. 137.
    Kistler, J., andS. Bullivant. 1980. The connexon order in isolated lens gap junctions. J. Ultrastruct. Res. 72: 27–38.PubMedGoogle Scholar
  143. 138.
    Peracchia, C., and L. L. Peracchia. 1980. Gap junction dynamics: Reversible effects of divalent cations. J. Cell Biol. 87: 708–718.PubMedGoogle Scholar
  144. 139.
    Peracchia, C., and L. L. Peracchia. 1980. Gap junction dynamics: Reversible effects of hydrogen ions. J. Cell Biol. 87: 719–727.PubMedGoogle Scholar
  145. 140.
    Broekhuyse, R. M., and E. D. Kuhlmann. 1980. Lens membranes. XI. Some properties of human main intrinsic protein (MIP) and its enzymatic conversion into a 27,000 dalton polypeptide. Exp. Eye Res. 30: 305–310.PubMedGoogle Scholar
  146. 141.
    Goodenough, D. A., J. S. B. Dick, III, and J. E. Lyons. 1980. Lens metabolic cooperation: A study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy. J. Cell Biol. 86: 576–589.Google Scholar
  147. 142.
    Nicholson, B. J., M. W. Hunkapiller, L. E. Hood, J. P. Revel, and L. Takemoto. 1980. Parial sequencing of the gap junctional protein from rat lens and liver. J. Cell Biol. 87: 1539a.Google Scholar
  148. 142a.
    Xancey, S. B., M. B. Griin, J. Cline, J. Harwitz, and J. P. Revel. 1984. Complete amino acid sequence of bovine lens MIP deduced by DNA cloning. J. Cell Biol. 99: Abstract 1267.Google Scholar
  149. 142b.
    Paul, David L., and Daniel A. Goodenoogh. 1983. In Vitro synthesis and membrane insertion of bovine MP26, an integral protein from lens fiber plasma membrane. J. Cell Biol. 96: 636–638.Google Scholar
  150. 143.
    Zigler, J. S., and J. Horwitz. 1981. Immunological studies on the major intrinsic membrane polypeptides from human lens. Invest. Ophthalmol. Visual Sci. 21: 46–51.Google Scholar
  151. 144.
    Benedetti, E. L., I. Dunia, F. C. S. Ramaekers, and M. A. Kib- blaar. 1981. Lenticular plasma membranes and cytoskeleton. In: Molecular and Cellular Biology of the Eye Lens. H. Bloemendal, ed. Wiley, New York. pp. 137–188.Google Scholar
  152. 145.
    Kistler, J., and S. Bullivant. 1980. Lens gap junctions and orthogonal arrays are unrelated. FEBS Lett. 111: 73–78.PubMedGoogle Scholar
  153. 146.
    Simon, S. A., G. Zampighi, T. J. Mcintosh, M. J. Costello, H. P. Ting-Beall, and J. D. Robertson. 1982. The structure of junctions between lens fiber cells. Biosci. Rep. 2: 331–341.Google Scholar
  154. 147.
    Costello, M. J., H. P. Ting-Beall, and J. D. Robertson. 1982. Freeze-fractured patterns of ultra-rapidly cooled fragments of mammalian lens fiber cells. Proc. 10th Int. Congr. Electron Microsc., Hamburg, pp. 211–212.Google Scholar
  155. 148.
    Costello, M. J. 1980. Ultra rapid freezing of thin biological samples. Scanning Electron Microsc. 11: 361–370.Google Scholar
  156. 149.
    Paul, D. L., and D. A. Goodenough. 1983. Preparation, characterization, and localization of antisera against bovine MP26, an integral protein from lens fiber plasma membrane. J. Cell Biol. 96: 625–633.PubMedGoogle Scholar
  157. 150.
    Robertson, J. D., M. J. Costello, and T. J. Mclctosh. 1983. Recent findings on the molecular structure of the mammalian urinary bladder membranes. Anat. Rec. 265: 163–164.Google Scholar
  158. 151.
    Fitzgerald, P. G., D. Bok, and J. Horwitz. 1983. Immu- nocytochemical localization of the main intrinsic polypeptide (MIP) in ultrathin frozen sections of rat lens. J. Cell Biol. 97: 1491–1499.PubMedGoogle Scholar
  159. 151a.
    Bok, D., J. Dockstaden, and L. Horowitz. 1982. Immunocyto- chemical localization of the lens main intrinsic polypeptide (MIP26) in communicating junctions. J. Cell Biol. 92: 213–220.PubMedGoogle Scholar
  160. 152.
    Costello, M. J., and T. G. Frey. 1982. Membranous cytochrome c oxidase: A freeze-fracture electron microscopic analysis. J. Mol Biol. 162: 131–156.PubMedGoogle Scholar
  161. 153.
    Robertson, J. D. 1966. Current problems in unit membrane structure and contact relations. In: Nerve as a Tissue. K. Rodahl, ed. Harper, New York. pp. 11–48.Google Scholar
  162. 154.
    Robertson, J. D. 1972. The structure of biological membranes, current status. Arch. Intern. Med. 129: 202–228.PubMedGoogle Scholar
  163. 155.
    Stoeckenius, W. 1962. Some electron microscopical observations on liquid-crystalline phases in lipid-water systems. J. Cell Biol. 12: 221–229.PubMedGoogle Scholar
  164. 156.
    Sjostrand, J. 1965. A new ultrastructure element of the membrane in mitochondria and some cytoplasmic membranes. J. Ultrastruct. Res. 9: 340–361.Google Scholar
  165. 157.
    Blasie, J. K., M. M. Dewey, and A. Blaurock. 1965. Electron microscope and low-angle X-ray diffraction studies on outer segment membranes from the retina of the frog. J. Mol. Biol. 14: 143–152.PubMedGoogle Scholar
  166. 158.
    Gras, W. J., and C. R. Worthington. 1969. X-ray analysis of retinal photoreceptors. Proc. Natl. Acad. Sci. USA 63: 233–238.PubMedGoogle Scholar
  167. 159.
    Blaurock, A. E., and M. H. F. Wilkins. 1969. Structure of frog photoreceptor membranes. Nature (London) 223: 906–909.Google Scholar
  168. 160.
    Chabre, M., and A. Cavaggioni. 1973. Light induced changes of ionic flux in the retinal rod. Nature New Biol. 244: 118–120.PubMedGoogle Scholar
  169. 161.
    Corless, J. M. 1971. X-ray diffraction studies on retinal rod pho-toreceptor membrane structure. Unpublished Ph.D. thesis, Duke University.Google Scholar
  170. 162.
    Corless, J. M. 1972. Lamellar structure of bleached and unbleached rod photoreceptor membranes. Nature (London) 237: 229–231.Google Scholar
  171. 163.
    Corless, J. M., W. H. Cobbs, III, M. J. Costello, and J. D. Robertson. 1975. On the asymmetry of frog retinal rod outer segment disk membranes: Intepretation of freeze-fracture data. Exp. Eye Res. 23: 295–324.Google Scholar
  172. 164.
    Blasie, J. K. 1972. The location of photopigment molecules in the cross section of frog retinal receptor disk membranes. Biophys. J. 12: 191–204.PubMedGoogle Scholar
  173. 165.
    Santillan, G., and J. K. Blasie. 1975. A direct analysis of lamellar X-ray diffraction from lattice-disordered retinal receptor disk membrane multilayers at 8 Å resolution. Biophys. J. 15: 109a.Google Scholar
  174. 166.
    Ovchinnikov, Y. A. 1982. Rhodopsin and bacteriorhodopsin: Structure-function relationships. FEBS Lett. 148: 179–191.PubMedGoogle Scholar
  175. 167.
    Hong, B. K.-K., and W. L. Hubbell. 1978. Organization of rhodopsin in photoreceptor membranes. 2. Transmembrane organization of bovine rhodopsin: Evidence from proteolysis and lactoperoxidase in catalyzed iodination of native and reconstituted membranes. Biochemistry 17: 4403.Google Scholar
  176. 168.
    Hong, B. K.-K., and W. L. Hubbell. 1982. Iodination of rhodopsin and transmembrane topology. Methods Enzymol. 81: 269–275.Google Scholar
  177. 169.
    Nemes, P. P., G. P. Miljanich, D. L. White, and E. A. Dratz. 1980. Covalent modification of rhodopsin with imidoesters: Evidence for transmembrane arrangement of rhodopsin in rod outer segment disk membranes. Biochemistry 19: 2067–2074.PubMedGoogle Scholar
  178. 170.
    Cone, R. A. 1972. Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biol. 236: 39–43.PubMedGoogle Scholar
  179. 171.
    Chabre, M. 1975. X-ray diffraction studies of retinal rods. I. Structure of the disk membrane: Effect of illumination. Biochim. Biophys. Acta 382: 322–335.PubMedGoogle Scholar
  180. 172.
    Wood, J. G., and R. M. C. Dawson. 1974. Some properties of a major structural glycoprotein of sciatic nerve. J. Neurochem. 22: 627–630.PubMedGoogle Scholar
  181. 172a.
    Wu, C. W., and L. Stryer. 1972. Proximity relationship in rhodopsin. Proc. Natl. Acad. Sci. USA. 69: 1104–1108.PubMedGoogle Scholar
  182. 173.
    Hagins, W. A., W. E. Robinson, and S. Yoshikami. 1975. Ionic aspects of excitation in cord outer segments. In: Energy Transformation in Biological Systems. American Elsevier, New York. pp. 169–189.Google Scholar
  183. 174.
    Blaurock, A. F. 1975. Bacteriorhodopsin: A transmembrane pump containing α-helix. J. Mol. Biol. 93: 139–158.PubMedGoogle Scholar
  184. 175.
    Blaurock, A. F., and W. Stoeckenius. 1971. Structure of the purple membrane. Nature New Biol. 233: 152–155.PubMedGoogle Scholar
  185. 176.
    Knutton, S., A. R. Limbrick, and J. D. Robertson. 1974. Regular structure in membranes. I. Membranes in the endocytic complex of ileal epithelial cells. J. Cell Biol. 62: 679–694.PubMedGoogle Scholar
  186. 176a.
    Kirk, R. G., and M. Ginzburg. 1972. Ultrastructure of two spe¬cies of Halobacterium. J. Ultrastruct. Res. 41: 80–94.PubMedGoogle Scholar
  187. 177.
    Blair, P. V., T. Oda, E. E. Green, and H. Fernandes-Moran. 1963. Studies on the electron transfer system. LIV. Isolation of the unit of electron transfer. Biochemistry 2: 756–764.PubMedGoogle Scholar
  188. 178.
    Stoeckenius, W. 1963. Some observations on negatively stained mitochondria. J. Cell Biol. 17: 443–454.PubMedGoogle Scholar
  189. 179.
    Smith, D. S. 1963. The structure of flight muscle sarcosomes in the blowfly, Calliphora erythrocephala (Diptera). J. Cell Biol. 19: 115–138.PubMedGoogle Scholar
  190. 180.
    Racker, E., D. D. Tyler, R. W. Estabrook, T. E. Conover, D. F. Parsons, and B. Chance. 1965. Correlations between electron- transport activity, DTPase and morphology of submitochondrial particles. In: Oxidases and Related Redox Systems, Volume II. T. E. King, H. S. Mason, and M. Morrison, eds. Wiley, New York, pp. 1077–1101.Google Scholar
  191. 181.
    Zzar, K. 1974. Mitochondrial inner membrane particles seen in section of in situ large amplitude smaller mitochondria in rhizondernal cells of cress (Lepidium sativum L.). Bioenergetics 6: 57–68.Google Scholar
  192. 182.
    MacLennan, D. H., and J. Asia. 1968. Studies on the mitochondrial adenosine triphosphatase system. V. Localization of the oligomycin sensitivity conferring protein. Biochem. Biophys. Res. Commun. 33: 441–447.PubMedGoogle Scholar
  193. 183.
    Tzagoloff, T., and P. Meagher. 1971. Assembly of the mitochondrial membrane system. V. Properties of a dispersed preparation of the oligomycin sensitive ATPase of yeast mitochondria. J. Biol. Chem. 246: 7328–7336.PubMedGoogle Scholar
  194. 184.
    Laatsch, R. H., M. W. Kies, S. Gordon, andE. C. Alvord. 1962. The encephalomyelitic activity of myelin isolated by ultra- centrifugation. J. Exp. Med. 115: 777–778.PubMedGoogle Scholar
  195. 185.
    Nakao, A., W. J. Osmin, and E. R. Esitein. 1966. Basic proteins from the acidic extract of bovine spinal cord. I. Isolation and characterization. Biochim. Biophys. Acta 130: 163–170.Google Scholar
  196. 186.
    Eylar, E. H., and M. Thompson. 1969. Allergic encepha-lomyelitis: The physico-chemical properties of the basic protein encephalitogen from bovine spinal cord. Arch. Biochem. Biophys. 129: 468–479.PubMedGoogle Scholar
  197. 187.
    Eylar, E. N. 1977. The myelin membrane and its basic proteins. In: Structure of Biological Membranes. S. Abrahamsson and I. Pascher, eds. Plenum Press, New York. pp. 157–176.Google Scholar
  198. 188.
    Wolfgram, F. 1966. A new proteolipid fraction of the nervous system. I. J. Neurochem. 13: 461–470.PubMedGoogle Scholar
  199. 189.
    Wolfgram, F., and K. Kotorii. 1968. The composition of the myelin proteins of the peripheral nervous system. II. J. Neurochem. 15: 1291–1295.PubMedGoogle Scholar
  200. 190.
    Therun, W., and E. Mehl. 1970. Determination of molecular weights of microgram quantities of protein constituents from biological membranes and other complex mixtures: Gel electrophoresis across linear gradients of acrylamide. Biochim. Biophys. Acta 160: 132–134.Google Scholar
  201. 191.
    Eng, L. F. 1971. Molecular weights of the major myelin proteins. Fed. Proc. 30: 1248a.Google Scholar
  202. 192.
    Demel, R. A., Y. London, W. S. M. Geurts van Kessel, F. G. A. Vossenberg, and L. L. M. Van Dennen. 1973. The specific interaction of myelin basic protein with lipids at the air/water interface. Biochim. Biophys. Acta 311: 507–519.PubMedGoogle Scholar
  203. 192a.
    Dervichian, D. G. H. 1954. The surface properties of fatty acids and allied substances. In: Progress in the Chemistry of Fats and Other Lipids, Volume 2. R. T. Holman, W. O. Lundberg, andT. Malkin, eds. Academic Press, New York. p. 193.Google Scholar
  204. 193.
    Dickenson, J. P., K. M. Jones, S. R. Asparicio, and C. E. Lumsden. 1970. Localization of encephalitogenic protein in the intraperiod line of lamellar myelin. Nature (London) 227: 1133–1134.Google Scholar
  205. 194.
    Poduslo, J. F., and P. E. Braun. 1975. Topographical arrangement of membrane proteins in the intact myelin sheath. J. Biol. Chem. 250: 1099–1105.PubMedGoogle Scholar
  206. 195.
    Greenfield, S., S. Brostoff, E. H. Eylar, and P. Morell. 1972. Protein composition of myelin of the peripheral nervous system. J. Neurochem. 20: 1207–1216.Google Scholar
  207. 196.
    Bencina, B., P. R. Carnegie, T. A. McPherson, and G. Robson. 1969. Encephalitogenic basic protein from sciatic nerve. FEBS Lett. 4: 9–12.PubMedGoogle Scholar
  208. 197.
    Csejtey, J., J. F. Hallpike, C. W. M. Adams, and O. B. Bayliss. 1972. Histochemistry of myelin. XIV. Peripheral nerve myelin proteins: Electrophoretic and histochemical correlations. J. Neurochem. 19: 1931–1935.PubMedGoogle Scholar
  209. 198.
    Peterson, R. G. 1976. Myelin protein changes with digestion of whole sciatic nerve in trypsin. Life Sci. 18: 845–850.PubMedGoogle Scholar
  210. 199.
    Tenenbaum, D., and J. Folch-Pi. 1966. The preparation and characterization of water-soluble proteolipid protein from bovine brain white matter. Biochim. Biophys. Acta 115: 141–147.PubMedGoogle Scholar
  211. 200.
    Yamamoto, S., and J. O. Lampen. 1976. Membrane penicillinase of Bacillus licheniformis 749/C: Sequence and possible repeated tetrapeptide structure of the phospholipopeptide region. Proc. Natl. Acad. Sci. USA 73: 1457–1461.PubMedGoogle Scholar
  212. 201.
    Braun, V. 1975. Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim. Biophys. Acta 415: 335–377.PubMedGoogle Scholar
  213. 202.
    Allen, J. M., and J. Gockerman. 1964. Electrophoretic separation of multiple forms of particle associated acid phosphatase. Ann. N.Y. Acad. Sci. 121: 616–633.PubMedGoogle Scholar
  214. 203.
    Deamer, D. W., R. Leonard, A. Tardieu, and D. Branton. 1970. Lamellar and hexagon lipid phases visualized by freeze-etching. Biochim. Biophys. Acta 219: 47–60.PubMedGoogle Scholar
  215. 204.
    Tomino, S., and R. Paigen. 1975. Egasyn, a protein complexed with microsomal 3 glucuronidase. J. Biol. Chem. 250: 1146–1148.Google Scholar
  216. 205.
    Jakoi, E. R., and J. D. Robertson. 1975. Further characterization of a plasma membrane protein, ligatin, essential for the attachment of N-acetyl glucosaminidase. J. Cell Biol. 67: 190a.Google Scholar
  217. 206.
    Jakoi, E. R., G. Zampighi, and J. D. Robertson. 1975. Isolation and characterization of a water-soluble membrane protein from suckling rat ileum. Biophys. J. 15: 218a.Google Scholar
  218. 207.
    Jakoi, E. R., G. Zampighi, and J. D. Robertson. 1975. Regular structures in membranes. II. Morphological and biochemical characterization of two water-soluble membrane proteins isolated from the suckling rat ileum. J. Cell Biol. 70: 97–111.Google Scholar
  219. 208.
    Jakoi, E. R., G. Zampighi, and J. D. Robertson. 1975. Mor-phological and biochemical characterization of two water-soluble membrane proteins isolated from the suckling rat ileum. In: Proceedings of the International Conference on Biological Mem¬branes. L. Bolis, J. Hoffman, and A. Leaf, eds. Raven Press, New York. pp. 263–272.Google Scholar
  220. 209.
    Robertson, J. D., E. R., Jakoi, and G. Zampighi. 1975. Fine structure of the apical endocytic complex from suckling rat ileum. Anat. Rec. 181: 384.Google Scholar
  221. 210.
    Robertson, J. D., S. Knutton, A. R. Limbrick, E. R. Jakoi, andG. Zampighi. 1976. Regular structures in unit membranes. III. Further observations on the particulate component of the suckling rat ileum endocytic membrane complex. J. Cell Biol. 70: 112–122.PubMedGoogle Scholar
  222. 211.
    Gaston, S., R. B. Marchase, andE. R. Jakoi. 1982. Brain ligatin: A membrane-bound lectin that binds acetylcholinesterase. J. Cell Biochem. 18: 447–459.PubMedGoogle Scholar
  223. 212.
    Jakoi, E. R., K. Kempe, and S. Gaston. 1981. Ligatin binds phosphohexose residues on acidic hydrolases. J. Supramol. Struct. 16: 139–153.Google Scholar
  224. 213.
    Jakoi, E. R., and R. B. Marchase. 1979. Ligatin from embryonic chick neural retina. J. Cell Biol. 80: 642–650.PubMedGoogle Scholar
  225. 214.
    Robertson, J. D., and J. Vergara. 1980. Analysis of the structure of intramembrane particles of the mammalian urinary bladder. J. Cell Biol. 86: 514–528.PubMedGoogle Scholar
  226. 215.
    Robertson, J. D., and J. Vergara. 1982. One kind of intra-membrane particle is water soluble. Biophysical J. 37: 199–201.Google Scholar
  227. 216.
    Taylor, K. A., and J. D. Robertson. 1984. Analysis of the three- dimensional structure of the urinary bladder epithelial cell membranes. J. Ultrastructure Res. 87: 23–30.Google Scholar
  228. 217.
    Hicks, R. M., and B. Ketterer. 1970. Isolation of the plasma membrane of the luminal surface of the rat bladder epithelium and the occurrence of a hexagonal lattice of subunits both in negatively stained whole mounts and in sectioned membranes. J. Cell Biol. 45: 542–553.PubMedGoogle Scholar
  229. 218.
    Ketterer, B., R. M. Hicks, L. Christodoulides, and D. Beale. 1973. Studies of the chemistry of the luminal plasma membrane of rat bladder epithelial cells. Biochim. Biophys. Acta 311: 180–190.PubMedGoogle Scholar
  230. 219.
    Vergara, J., F. Zambrano, J. D. Robertson, and H. Elrod. 1974. Isolation and characterization of luminal membranes from urinary bladder. J. Cell Biol. 61: 83–94.PubMedGoogle Scholar
  231. 220.
    Vergara, J., W. Longley, and J. D. Robertson. 1969. A hexagonal arrangement of subunits in membrane of mouse urinary bladder. J. Mol. Biol. 46: 593–596.PubMedGoogle Scholar
  232. 221.
    Warren, R. C., and R. M. Hicks. 1970. Structure of the subunits in the thick luminal membrane of rat urinary bladder. Nature (London) 227: 280–281.Google Scholar
  233. 222.
    Wade, R., and A. Brisson. 1983. 3-Dimensional structure of luminal plasma membrane protein from urinary bladder membranes. Proc. Electron Microsc. Soc. Am. pp. 436–437.Google Scholar
  234. 223.
    Taylor, K. A., J. Vergara, and J. D. Robertson. 1983. Molecular structure of the mammalian urinary bladder membrane. Biophys. J. 41: 196a.Google Scholar
  235. 224.
    Abrams, A., C. Bavan, and M. P. Schenbli. 1972. The isolation of bacterial membrane ATPase and nectin. Methods Enzymol. 32: 428–446.Google Scholar
  236. 225.
    Schnebli, M. P., A. E. Vattoi, and A. Abrams. 1970. Membrane adenosine triphosphatase from Streptococcus faecalis, molecular weight, subunit structure, and amino acid composition. J. Biol. Chem. 245: 1122–1127.PubMedGoogle Scholar
  237. 226.
    Papahadjopoulos, D., W. J. Vail, and M. Moscarollo. 1975. Interaction of a purified protein from myelin with phospholipid membranes: Studies on the ultrastructure, phase transitions and permeability. J. Membr. Biol. 22: 143–164.PubMedGoogle Scholar
  238. 227.
    Shidlovsky, G. 1965. Contrast in multilayer systems. Lab. Invest. 14: 475–495.Google Scholar
  239. 228.
    Blodgett, K. D. 1935. Film built by depositing successive monomolecular layers in a solid surface. J. Am. Chem. Soc. 57: 1007–1022.Google Scholar
  240. 229.
    Blodgett, K. B., and I. Langmuir. 1937. Builtup films of barium sterate and their optical properties. Phys. Rev. 51: 964–982.Google Scholar
  241. 230.
    Mcintosh, T. J., R. C. Waldbillig, and J. D. Robertson. 1976. Lipid bilayer ultrastructure: Electron density profiles and chain tilt angles as determined by X-ray diffraction. Biochim. Biophys. Acta 448: 15–33.PubMedGoogle Scholar
  242. 231.
    Waldbillig, R. C., T. J. Mcintosh, and J. D. Robertson. 1976. Images of molecular flip-flop in asymmetric lipid bilayers. Biophys. J. 16: 194a.Google Scholar
  243. 232.
    Waldbillig, R. C., J. D. Robertson, and T. J. Mcintosh. 1976. Images of divalent cations in unstained symmetric and asymmetric lipid bilayers. Biochim. Biophys. Acta 448: 1–14.PubMedGoogle Scholar
  244. 233.
    Gaines, G. L. 1966. Insoluble Monolayers at Liquid-Gas Interfaces. Wiley, New York.Google Scholar
  245. 234.
    Shah, D. O. 1969. Lipid-protein interaction in monolayers: Effects of conformation on poly-L-lysine on stearic acid monolayers. Biochim. Biophys. Acta 193: 217–220.PubMedGoogle Scholar
  246. 235.
    Cadenhead. D. A. 1970. Monolayers of synthetic phospholipids. Recent Prog. Surf. Sci. 3: 169–192.Google Scholar
  247. 236.
    Malcolm, B. R. 1973. The structure and properties of monolayers of synthetic polypeptides at the air-water interface. Prog. Surf. Membr. Sci. 7: 183–229.Google Scholar
  248. 237.
    Larsson, K. 1973. Lipid multilayers. In: Surface and Colloid Science, Volume 6. E. Matijevic and F. R. Eirich, eds. Wiley, New York. p. 261.Google Scholar
  249. 238.
    Papahadjopoulos, D. 1968. Surface properties of acidic phospholipids: Interaction of monolayer of hydrated liquid crystals with uni- and bivalent metal ions. Biochim. Biophys. Acta 163: 240–254.PubMedGoogle Scholar
  250. 239.
    Standish, M. M., and B. A. Pethica 1968. Surface pressure and surface potential study of a synthetic phospholipid at the air/water interface. Trans. Faraday Soc. 64: 1113.Google Scholar
  251. 240.
    Gould, R. M., and Y. London. 1972. Specific interaction of central nervous system myelin basic protein with lipids: Effects of basic protein with lipids. Effects of basic protein on glucose leakage from liposomes. Biochim. Biophys. Acta 290: 200–218.PubMedGoogle Scholar
  252. 241.
    Green, J. B., M. C. Phillips, and G. G. Shipley. 1973. Structural investigations of lipid, polypeptide and protein multilayers. Biochim. Biophys. Acta 330: 243–253.PubMedGoogle Scholar
  253. 242.
    Colacicco, G. 1969. Lipid monolayers: Mechanism of protein penetration with regard to membrane models. Lipids 5: 636–649.Google Scholar
  254. 243.
    Bach, D., and I. R. Miller. 1973. Interaction of bilayers with basic polypeptides. J. Membr. Biol. 11: 237–254.Google Scholar
  255. 244.
    Miller, I. R., and D. Bach. 1974. Composition of bilayers and monolayers and absorption of basic polypeptides onto lipid surface layers. J. Colloid Interface Sci. 49: 453–461.Google Scholar
  256. 245.
    Shafer, P. T. 1974. The interaction of polyamino acids with lipid monolayers. Biochim. Biophys. Acta 373: 425–435.PubMedGoogle Scholar
  257. 246.
    Giannoni, G., F. J. Padden, and R. S. Rue. 1971. A lamellar complex of lecithin and poly-L-tyrosine. Biophys. J. 11: 1018–1029.PubMedGoogle Scholar
  258. 247.
    Robertson, J. D., and M. J. Costello. 1974. Electron microscopic and X-ray diffraction studies on membrane model systems. Electron Microscopy, Volume II. Aust. Acad. Sci., Canberra, pp. 218–219a.Google Scholar
  259. 248.
    Romeo, D., A. Girard, and G. Rothfield. 1970. Reconstitution of a functional membrane enzyme system in a monomolecular film. I. Formation of a mixed monolayer of lipopolysaccharide and phospholipid. J. Mol. Biol. 53: 475–490.PubMedGoogle Scholar
  260. 249.
    Romeo, D., A. Girard, and G. Rothfield. 1970. Reconstitution of a functional membrane enzyme system in a monomolecular film. II. Formation of a functional ternary film of lipopolysaccharide, phospholipid and transferase enzyme. J. Mol. Biol. 53: 491–501.PubMedGoogle Scholar
  261. 250.
    Frye, L. D., and M. Edidin. 1970. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J. Cell Sci. 7: 319–335.PubMedGoogle Scholar
  262. 251.
    da Silva, P., and D. Branton. 1970. Membrane splitting in freeze- etching: Covalently bound ferritin as a membrane marker. J. Cell Biol. 45: 598–605.Google Scholar
  263. 252.
    Branton, D., and D. W. Deamer. 1972. Membrane structure. In: Protoplasmatologia. M. Alfert, H. Bauer, W. Sandritter, and P. Sitte, eds. Springer-Verlag, Berlin, pp. 2–70.Google Scholar
  264. 253.
    Kirk, R. G., and D. C. Tosteson. 1973. Cation transport and membrane morphology. J. Membr. Biol. 12: 273–285.PubMedGoogle Scholar
  265. 254.
    Yahara, I., and G. M. Edelman. 1975. Electron microscopic analysis of the modulation of lymphocyte receptor mobility. Exp. Cell Res. 91: 125–142.PubMedGoogle Scholar
  266. 255.
    Segrest, J. R., T. Gulick-Krzywicki, and C. Sardet. 1974. Association of the membrane-penetrating polypeptide segments of the human erythrocyte NM-glycoprotein with phospholipid bilayers. I. Formation of freeze-etch intramembranous particles. Proc. Natl. Acad. Sci. USA 71: 3294–3298.PubMedGoogle Scholar
  267. 256.
    Gulick-Krzywicki, T. 1974. Structural studies of the associations between biological membrane components. Biochim. Biophys. Acta 451: 1–28.Google Scholar
  268. 257.
    Reynolds, J. A., and C. Tanford. 1970. Binding of dodecyl sulfate to proteins at high binding ratios: Possible implications for state of proteins in biological membranes. Proc. Natl. Acad. Sci. USA 66: 1002–1007.PubMedGoogle Scholar
  269. 258.
    Barka, T. 1961. Studies of acid phosphatase. I. Electrophoretic separation of acid phosphatases of rat liver on polyacrylamide gels. J. Histochem. Cytochem. 9: 425–433.Google Scholar
  270. 259.
    Ornstein, L., and B. Davis. 1962. Disk Electrophoresis, Parts I and I I. Distillation Products Industries, Rochester, N.Y.Google Scholar
  271. 260.
    Mathews, F. S., P. Argos, and M. Levine. 1971. The structure of cytochrome b5 at 2.0 A resolution. Cold Spring Harbor Symp. Quant. Biol. 36: 387–395.Google Scholar
  272. 261.
    Mueller, P., D. V. Rudin, M. Glen, and C. W. Wescott. 1962. Reconstruction of excitable cell membrane structure in vitro. Circulation 26: 1167–1171.Google Scholar
  273. 262.
    Thompson, T. E. 1960. The properties of bimolecular phospholipid membranes. In: Cellular Membranes in Development. M. Locke, ed. Academic Press, New York. pp. 83–96.Google Scholar
  274. 263.
    Hanai, T., D. A. Haydon, and W. R. Redwood. 1966. The water permeability of artificial bimolecular leaflets: A comparison of radio-tracer and osmotic methods. Ann. N.Y. Acad. Sci. 137: 731–744.PubMedGoogle Scholar
  275. 264.
    Tosteson, D. C. 1972. Some characteristics of ion transport across thin lipid bilayer membranes containing macrocyclic compounds. In: Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes. F. Garcia-Ferrandiz and D. Vazquez, eds. Elsevier, New York. pp. 615–630.Google Scholar
  276. 265.
    Tien, H. T. 1982. Artificial planar bilayer lipid membranes. In: Membranes and Transport, Volume 1. A. N. Martonosi, ed. Plenum Press, New York. pp. 165–171.Google Scholar
  277. 266.
    Montal, M., A. Darszon, and H. Schindler. 1981. Functional reassembly of membrane proteins in planar lipid bilayers. Q. Rev. Biophys. 14: 1–79.PubMedGoogle Scholar
  278. 267.
    Montal, M., and P. Mueller. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natal. Acad. Sci. USA 69: 3561–3566.Google Scholar
  279. 268.
    Simon, S., T. J. Mcintosh, and R. Latorre. 1982. Influence of cholesterol on water penetration into bilayers. Science 216: 65–67.PubMedGoogle Scholar
  280. 269.
    Steere, R. L. 1957. Electron microscopy of structural detail in frozen biological specimens. J. Biophys. Biochem. Cytol. 3: 45–60.PubMedGoogle Scholar
  281. 270.
    Moor, H., K. Muhlethaler, H. Waldner, and A. Frey-Wyssling. 1961. A new freezing ultramicrotome. J. Cell Biol. 10: 1–15.Google Scholar
  282. 271.
    Branton, D., and R. B. Park. 1967. Subunits in chloroplast lamellae. J. Ultrastruct. Res. 19: 283–303.PubMedGoogle Scholar
  283. 272.
    Bullivant, S., and A. Ames, III. 1966. A simple freeze-fracture replication method for electron microscopy. J. Cell Biol. 29: 435–447.PubMedGoogle Scholar
  284. 273.
    Goodenough, U. W., and L. A. Staehelin. 1971. Structural differentiation of stacked and unstacked chloroplast membranes: Freeze-etch electron microscopy of wild-type and mutant strains of Chlamydomonas. J. Cell Biol. 48: 594–619.PubMedGoogle Scholar
  285. 274.
    Chalcroft, J. P., and S. Bullivant. 1970. An interpretation of liver cell membrane and junction structure based on observation of freeze fracture replicas of both sides of the fracture. J. Cell Biol. 47: 49–60.PubMedGoogle Scholar
  286. 275.
    Steere, R. L., and M. Moseley. 1969. New dimensions in freeze- etching. In: Proceedings of the Electron Microscopy Society of America, 27th Annual Meeting. C.J. Arceneaux, ed. Claitor’s, Baton Rouge, pp. 202–203.Google Scholar
  287. 275a.
    Steere, R. L., and J. R. Somer. 1972. Stereo ultrastructure of nexus faces exposed by freeze fracturing. J. Microscopic (Paris) 15: 205–218.Google Scholar
  288. 275b.
    Somer, J. R., R. L. Steere, E. D. Johnson, and P. H. Jewett. 1972. Ultrastructure of cardiac muscle. A comparative review with emphasis on the muscle fibers of the ventricles. In: Hibernation and Hypothermic, Perspectives and Challenges. T. E. South, J. P. Hannon, J. R. Willis, E. J. Pengelley, and N. R. Alpert. Elservier Amsterdam, pp. 255–291.Google Scholar
  289. 276.
    Weinstein, R. S., and S. Bullivant. 1967. The application of freeze-cleaving techniques to studies on red blood cell fine structure. Blood 29: 780–789.PubMedGoogle Scholar
  290. 277.
    Clark, A. W., and D. Branton. 1968. Fracture faces in frozen outer segments from the guinea pig retina. Z. Zellforsch. Mikrosk. Anat. 91: 586–603.PubMedGoogle Scholar
  291. 278.
    Rash, J. E., andM. H. Ellisman. 1974. Studies of excitable membrane. I. Macromolecular specialization of the neuromuscular junction and the nonjunctional sarcolemma. J. Cell Biol. 63: 568–586.Google Scholar
  292. 279.
    Heuser, J. E., T. S. Reese, and M. D. Landis. 1974. Functional changes in frog neuromuscular junctions studied with freeze-fracture. J. Neurocytol. 3: 109–131.PubMedGoogle Scholar
  293. 280.
    Changeaux, J. P. 1975. Lecture at International Conference on Biological Membranes, Crans sur Sierre, Switzerland, June 15–21.Google Scholar
  294. 281.
    Hong, B. K.-K., and W. L. Hubbell. 1972. Preparation and properties of phospholipid bilayers containing rhodopsin. Proc. Natl. Acad. Sci. USA 69: 2617–2621.PubMedGoogle Scholar
  295. 282.
    Deamer, D. W., and N. Yamanaka. 1975. Freeze-fracture particles in protease treated membranes. Biophys. J. 15: 110–111.Google Scholar
  296. 283.
    Shimshick, E. J., W. Kleeman, W. L. Hubbell, and H. M. McConnell. 1973. Lateral phase separations in membranes. J. Supramol. Struct. 1: 285.PubMedGoogle Scholar
  297. 284.
    Costello, M. J., andT. Gulik-Krzywicki. 1976. Correlated X-ray diffraction and freeze-fracture studies on membrane model systems. Biochim. Biophys. Acta 455: 412–432.PubMedGoogle Scholar
  298. 285.
    Robertson, J. D., and J. A. Vergara. 1980. A morphometric freeze-fracture-etch (FFE) analysis on the nature of intra- membrane particles. Proc. Electron Microsc. Soc. Am. G. W. Bailey, ed. pp. 790–791.Google Scholar
  299. 285a.
    Robertson, J. David, and Juan Vargara. 1980. Analysis of the structure of intramembrane particles of the mammalian urinary bladder. J. Cell Biol. 86: 514–528.PubMedGoogle Scholar
  300. 286.
    VanDeenen, L. L. M., U. T. M. Houtsmuller, G. A. deHaas, and E. Mulder. 1962. Monomolecular layers of synthetic phos-phatides. J. Pharm. Pharmacol. 14: 429.Google Scholar
  301. 287.
    Adamich, M., and E. A. Dennis 1979. Action of O cobra venom phospholipase A2 toward lipids of erythrocyte membranes. In: Normal and Abnormal Red Cell Membranes. S. E. Lux, V. T. Marchesi, and C. F. Fox (eds.). Liss, New York. pp. 515–521.Google Scholar
  302. 288.
    Everly, J. L., R. O. Brady, and R. H. Quarles. 1973. Evidence that the major protein in rat sciatic nerve myelin is a glycoprotein. J. Neurochem. 21: 329–334.PubMedGoogle Scholar
  303. 289.
    Dervichian, D. G. 1954. The surface properties of fatty acids and allied substances. In: Progress in the Chemistry of Fats and Other Lipids, Volume 2. R. T. Holman, W. O. Lundberg, and T. Mal- kin, eds. Academic Press, New York. p. 193.Google Scholar
  304. 290.
    Branton, D. 1971. Freeze-etching studies of membrane structures. Philos. Trans. R. Soc. Lond. B. 261: 133–138.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • J. David Robertson
    • 1
  1. 1.Department of AnatomyDuke University Medical CenterDurhamUSA

Personalised recommendations