Platelets and Propylene Glycol: An Approach to Freezing Platelets in the Presence of a New Cyroprotectant

  • F. G. Arnaud
  • Ch. J. Hunt
  • D. E. Pegg
Part of the Developments in Hematology and Immunology book series (DIHI, volume 19)

Abstract

Banking of cryopreserved platelets would make it possible to adjust the balance between supply and demand, and would facilitate the availability of typed [1,2] and autologous [3,4] platelets and random blood groups in cases of emergency [5]. The cryopreservation of platelets, at slow cooling rates, using conventional cryoprotectants (CPAs) remains unisatisfactory when assessed in vitro [6–8] although some have considered the results sufficiently good for clinical use [9,10]. Since the first attempts [11,12] platelet freezing has proved less satisfactory than that of many other cells, such as red blood cells [13]. This poor response might be explained by greater osmotic fragility of platelets [14] or by an inadequate concentration of CPA [15] due to the limitations imposed by toxic effects.

Keywords

Permeability Toxicity Glycerol Leukemia Propylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hervé P, Masse M, Coffe C, Peters A. Cryopreserving HLA-typed platelets obtained on cell separators. Lancet 1977;ii:45.CrossRefGoogle Scholar
  2. 2.
    Hester JP, McCredie P, Freireich EJ. Platelet replacement therapy. Prog Clin Biol Res 1978:281.Google Scholar
  3. 3.
    van Imhoff GW, Arnaud F, Postmus PE, Mulder NH, Das PC, Smit Sibinga CTh. Autologous cryopreserved platelets and prophylaxis of bleeding in autologous bone marrow transplantation. Blut 1983;47:203–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Schiffer CA, Aisner J, Wiernik PH. Frozen autologous platelet transfusion for patients with leukemia. N Engl J Med 1978;299:7–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Mollison PC. Blood transfusion in clinical medicine. London: Blackwell Scientific Publication 1983:157–90.Google Scholar
  6. 6.
    Dayian G, Rowe AW. Cryopreservation of human platelets for transfusion. A glycerol-glucose, moderate rate cooling procedure. Cryobiology 1976;13:1–8.PubMedCrossRefGoogle Scholar
  7. 7.
    van Prooijen HC, van Heugten JG, Mommersteed ME, Akkerman JWN. Acquired secretion defect in platelets after cryopreservation in dimethyl sulfoxide. Transfusion 1986;26:358–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Law P, Meryman HT. Cryopreservation of platelets: current status. Plasm Ther Transfus Technol 1982;3:317–26.Google Scholar
  9. 9.
    Lazarus M, Kanieki-Green E, Warm S, Aikawa M, Herzig H. Therapeutic effectiveness of frozen platelet concentrates for transfusion. Blood 1981;57:243–9.PubMedGoogle Scholar
  10. 10.
    Hervé P, Potron G, Droule C, et al. Human platelets frozen with glycerol in liquid nitrogen. Biological and clinical aspects. Transfusion 1981;21:384–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Klein E, Toch R, Farber S, Freeman G, Florentino R. Hemostasis in thrombocytopenic bleeding following infusion of stored, frozen platelets. Blood 1956;11: 693–9.PubMedGoogle Scholar
  12. 12.
    Baldini M, Costea N, Dameshek W. The viability of stored human platelets. Blood 1960;16:1669–92.PubMedGoogle Scholar
  13. 13.
    Rowe AW, Lenny LL, Mannoni P. Cryopreservation of red cells and platelets. In: Ashwood-Smith MJ, Farrant J (eds). Low temperature preservation in medicine and biology. Pitman Medical Ltd. 1980:85–120.Google Scholar
  14. 14.
    Armitage WJ, Parman N, Hunt CJ. The effects of osmotic stress on human platelets. J Cell Physiol 1985;123:241–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Armitage WJ. Osmotic stress as a factor in the detrimental effect of glycerol on human platelets. Cryobiology (in press).Google Scholar
  16. 16.
    Heal JM, Singal S, Sardisco E, Mayer T. Bacterial proliferation in platelet concentrates. Transfusion 1986;26:388–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Braine HG, Kickler TS. Charache P, et al. Bacterial sepsis secondary to platelet transfusion: an adverse effect of extended storage. Transfusion 1986;26:391–4.Google Scholar
  18. 18.
    Nash T. Chemical constitution and physical properties of compounds able to protect living cells against damage due to freezing and thawing. In: Merymann HT (ed). Cryobiology. New York: Academic Press 1966:179–210.Google Scholar
  19. 19.
    Armitage WJ. Effect of solute concentration on intracellular water volume and hydraulic conductivity of human blood platelets. J Physiol (in press).Google Scholar
  20. 20.
    Boutron P, Arnaud F. Comparison of the cryoprotection of red blood cells by 1,2-propanediol and glycerol. Cryobiology 1984;21:348–58.PubMedCrossRefGoogle Scholar
  21. 21.
    Renard JP, Bui-Xuan-Nguyen, Gamier V. Two-step freezing of two-cell rabbit embryos after partial dehydration at room temperature. J Reprod Fert 1984;71: 573–80.CrossRefGoogle Scholar
  22. 22.
    Halasz NA, Collins GM. Studies in cryoprotection II: Propylene glycol and glycerol. Cryobiology 1984;21:144–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Boutron P, Kaufmann A. Stability of the amorphous state in the system water-1,2-propanediol. Cryobiology 1979;16:557–68.PubMedCrossRefGoogle Scholar
  24. 24.
    Armitage WJ. Permeability of human blood platelets to glycerol. J Cell Phys 1986;128:121–6.CrossRefGoogle Scholar
  25. 25.
    Dick DAT. Osmotic properties of living cells. Int Rev of Cytology 1959;8: 387–448.CrossRefGoogle Scholar
  26. 26.
    Tedeschi H, Harris DL. Some observations on the photometric estimation of mitochondrial volume. Biochimica et Biophysica Acta 1958;28:392–402.PubMedCrossRefGoogle Scholar
  27. 27.
    Nobel PS. The Boyle-van’t Hoff relation. J Theoret Biol 1969;23:375–9.CrossRefGoogle Scholar
  28. 28.
    Kedem O, Katchalsky A. Thermodynamic analysis of permeability of biological membranes to non-electrolytes. Biochimica et Biophysica Acta 1958;27:229–46.PubMedCrossRefGoogle Scholar
  29. 29.
    Valeri CR, Feingold H, Marchionni LD. The relation between response to hypotonic stress and the 51Cr recovery in vivo of preserved platelets. Transfusion 1974;4:331–7.CrossRefGoogle Scholar
  30. 30.
    Armitage WJ, Hunt CJ. The effect of glycerol on aggregation and ultrastructure of human platelets. Cryobiology 1982;19:110–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Stein WD. The movement of molecules across cell membranes. New York: Academic Press 1967:112.Google Scholar
  32. 32.
    Goldstein DA, Solomon AK. Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J General Physiol 1960;44: 1–17.CrossRefGoogle Scholar
  33. 33.
    Undeutsch K, Reuter H, Gross R. Investigation on the preservation of human platelets. I. The effect of glycerol on platelet metabolism and function. Thrombosis Res 1975;6:459–68.CrossRefGoogle Scholar
  34. 34.
    Kim BK, Baldini MG. Glycerol stress and platelet integrity. Cryobiology 1986; 23:209–13.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1987

Authors and Affiliations

  • F. G. Arnaud
  • Ch. J. Hunt
  • D. E. Pegg

There are no affiliations available

Personalised recommendations