Regulation of Viral Transcription Units by SV40 T-Antigen

  • J. Brady
  • M. Loeken
  • M. A. Thompson
  • J. Duvall
  • G. Khoury
Part of the Developments in Molecular Virology book series (DMVI, volume 9)


We have investigated the ability of SV40 T-antigen to trans-activate the SV40 late and the Adenovirus E2 promoters. Transcriptional control signals required for T-antigen trans-activation of the SV40 late promoter include T-antigen binding site II and the SV40 72-bp repeats. In vivo competition with recombinant plasmids containing the entire SV40 late regulatory region and promoter sequences (mp 5171–272) results in quantitative removal of limiting trans-acting factors required for late gene expression in COS-1 cells. Insertion of increasing lengths of DNA sequences between the T-antigen binding sites and the 72-bp repeats dramatically reduces the competition efficiency, suggesting a physical interaction between proteins binding to the separate regulatory domains. Transfection experiments have been performed in ts2 COS cells, which express the ts 1609 SV40 T-antigen. Transfection at the non-permissive temperature (40°C) resulted in a 5- to 10-fold reduction in SV40 late promoter activity compared to the permissive temperature (33°C), suggesting that trans-activation of the SV40 late promoter requires continued expression of T-antigen.

SV40 T-antigen trans-activates the Ad E2 promoter as effectively as does the Ad E1A protein. While 79 bp of upstream sequences are required for basal, E1A or T-antigen stimulated E2 promoter function, our experiments indicate that cellular factors which mediate stimulation by T-antigen and E1A are different. The sequences between -75 and -30 contain two imperfect 14 bp repeats separated by 16 bp. Using chemically synthesized DNA fragments containing the inverted repeat, we demonstrate that E1A efficiently induces transcriptional activity when these sequences are inserted in either orientation upstream of a heterologous promoter. Similar results were obtained using SV40 T-antigen. This suggests that target sequences for both E1A and T-antigen trans-activation of the E2 promoter are located between -85 and -29 and function in an orientation-independent fashion.


Chloramphenicol Acetyl Transferase Late Gene Expression Cellular Transcription Factor Chloramphenicol Acetyl Transferase Activity Chloramphenicol Acetyl Transferase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tooze, J. (ed.) Molec. Biology of Tumor Viruses, 2nd ed., Cold Spring Harbor Laboratory, 1980.Google Scholar
  2. 2.
    Banerji, J., Rusconi, S. and Schaffner, W. Cell 27:299–308, 1981.PubMedCrossRefGoogle Scholar
  3. 3.
    Gruss, P., Dhar, R. and Khoury, G. Proc. Natl. Acad. Sci. USA 78:943–947, 1981.PubMedCrossRefGoogle Scholar
  4. 4.
    Moreau, P., Hen, R., Wasylyk, R., Everett, R., Gaub, M.P. and Chambon, P. Nucleic Acids Res. 9:6047–6068, 1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Baker, C.C. and Ziff, E.B. J. Mol. Biol. 149:189–221, 1981.CrossRefGoogle Scholar
  6. 6.
    Berk, A.J., Lee, F., Harrison, J., Williams, J. and Sharp, P. Cell 17:935–944, 1979.PubMedCrossRefGoogle Scholar
  7. 7.
    Guilfoyle, R.A., Osheroff, W.P. and Rossini, M. Embo J. 4:707–713, 1985.PubMedGoogle Scholar
  8. 8.
    Nevins, J.R. Cell 26:213–220, 1981.PubMedCrossRefGoogle Scholar
  9. 9.
    Feldman, L.T., Imperiale, M.J. and Nevins, J.R. Proc. Natl. Acad. Sci, USA, 79:4952–4956, 1982.PubMedCrossRefGoogle Scholar
  10. 10.
    Imperiale, M.J., Feldman, L.T. and Nevins, J.R. Cell 35:127–136, 1983.PubMedCrossRefGoogle Scholar
  11. 11.
    Loeken, M.R., Khoury, G. and Brady, J. Mol. Cell. Riol. 6:2020–2026, 1986.Google Scholar
  12. 12.
    Ferguson, B., Krippl, B., Andrisani, O., Jones, N., Westphal, H. and Rosenberg, M. Mol. Cell. Riol. 5:2653–2661, 1985.Google Scholar
  13. 13.
    Rrady, J., Bolen, J.B., Radonovich, M., Salzman, N. and Khoury, G. Proc. Natl. Acad. Sci. USA 81:2040–2044, 1984.CrossRefGoogle Scholar
  14. 14.
    Brady, J. and Khoury, G. Mol. Cell. Biol. 5:1391–1399, 1985.PubMedGoogle Scholar
  15. 15.
    Weiher, H., König, M. and Gruss, P. Science 219:626–631, 1983.PubMedCrossRefGoogle Scholar
  16. 16.
    Brady, J., Loeken, M.R. and Khoury, G. Proc. Natl. Acad. Sci. USA 82:7299–7303, 1985.PubMedCrossRefGoogle Scholar
  17. 17.
    Innis, J. and Scott, W. Mol. Cell. Biol. 4:1499–1507, 1984.PubMedGoogle Scholar
  18. 18.
    Rio, O.C., Clark, S.G. and Tjian, R. Science 227:23–28, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Imperiale, M.J., Hart, R.P. and Nevins, J.R. Proc. Natl. Acad. Sci. USA 82:381–385, 1985.PubMedCrossRefGoogle Scholar
  20. 20.
    Imperiale, M.J. and Nevins, J.R. Mol. Cell. Biol. 4:875–882, 1984.PubMedGoogle Scholar
  21. 21.
    Murthy, S.C.S., Bhat, G.P. and Thimmappaya, B. Proc. Natl. Acad. Sci. USA 82:2230–2234, 1985.PubMedCrossRefGoogle Scholar
  22. 22.
    Treisman, R., Green, M.R. and Maniatis, T. Proc. Natl. Acad. Sci. USA 80:7428–7432, 1983.PubMedCrossRefGoogle Scholar
  23. 23.
    Keller, J.M. and Alwine, J. Cell 36:381–389, 1984.PubMedCrossRefGoogle Scholar
  24. 24.
    Keller, J.M. and Alwine, J. Mol. Cell. Biol. 5:1859–1869, 1985.PubMedGoogle Scholar
  25. 25.
    Alwine, J.C. Mol. Cell. Biol. 5:1034–1042, 1985.PubMedGoogle Scholar
  26. 26.
    Hamer, D.H. and Khoury, G. In Gluzman, Y. and Shenk, T. (Eds.): Enhancers and Eukaryotic Gene Expression, Cold Spring Harbor Laboratory, 1–15, 1983.Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1987

Authors and Affiliations

  • J. Brady
    • 1
  • M. Loeken
    • 1
  • M. A. Thompson
    • 1
  • J. Duvall
    • 1
  • G. Khoury
    • 1
  1. 1.Laboratory of Molecular VirologyNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations