Advertisement

Force-Interval Relationship and Activator Calcium Availability: Similarities of Sympathetic Stimulation and Hypertrophy and Heart Failure

  • Page A. W. Anderson
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 62)

Abstract

The properties of the sarcoplasmic reticulum (SR) and sarcolemma, which are important in the control of cytosolic calcium [1–9], are among the many aspects of the myocardium that are affected by hypertrophy and heart failure. In this chapter, the effects of disease on the modulation of activator calcium are examined by means of the “force-interval relationship,” which expresses the dependence of the force of contraction on the temporal pattern of stimulation [10].

Keywords

Sarcoplasmic Reticulum Papillary Muscle Activator Calcium Sympathomimetic Agent Restitution Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tritthart, H., Kaufmann, R., Volkmer, H-P., Bayer, R., and Krause, H. 1973. Ca-movement controlling myocardial contractility. I. Voltage-, current- and time-independence of mechanical activity under voltage clamp conditions (cat papillary muscles and trabeculae). Pfluegers Arch. 338:207–231.CrossRefGoogle Scholar
  2. 2.
    Trautwein, W., Monald, T.F., and Tripathi, O. 1975. Calcium conductance and tension in mammalian ventricular muscle. Pflugers Arch. 354:55–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Fabiato, A., and Fabiato, F. 1977. Calcium release from the sarcoplasmic reticulum. Circ. Res. 40:119–129.PubMedGoogle Scholar
  4. 4.
    Morad, M., Goldman, Y.E., and Trentham, D.R. 1983. Rapid photochemical inactivation of Ca2+-antagonists shows that Ca2+ entry directly activates contraction in frog heart. Nature 304:635–638.PubMedCrossRefGoogle Scholar
  5. 5.
    Philipson, K.D. 1985. Sodium-calcium exchange in plasma membrane vesicles. Ann. Rev. Physiol. 45:561–571.CrossRefGoogle Scholar
  6. 6.
    Inesi, G. 1985. Mechanism of calcium transport. Ann. Rev. Physiol. 47:573–601.CrossRefGoogle Scholar
  7. 7.
    Mechmann, S., and Pott, L. 1986. Identification of Na-Ca Exchange Current in Single Cardiac Myocytes. Nature 319:597–599.PubMedCrossRefGoogle Scholar
  8. 8.
    Kimura, J., Noma, A., and Irisawa, H. 1986. Na-Ca exchange current in mammalian heart cells. Nature 319:596–597.PubMedCrossRefGoogle Scholar
  9. 9.
    Newman, W.H. 1983. Biochemical, structural, and mechanical defects of the failing myocardium. Pharmacol. Ther. 22:215–247.PubMedCrossRefGoogle Scholar
  10. 10.
    Johnson, E.A. 1978. Force-interval relationship of cardiac muscle. In Handbook of Physiology section 2, volume 1, Berne, R. M., Sperelakis, N., and Geiger, S. R., eds., pp. 475–496 Bethesda: American Physiological Society.Google Scholar
  11. 11.
    Simpson, P., Mrath, A., and Savion, S. 1982. Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circ. Res. 51:787–801.PubMedGoogle Scholar
  12. 12.
    Simpson, P. 1983. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha]-adrenergic response. J. Clin. Invest. 72:732–738.PubMedCrossRefGoogle Scholar
  13. 13.
    Simpson, P. 1985. Stimulation of hypertrophy of cultured neonatal rat heart cells through an α1-adrenergic receptor and induction of beating through ans α1- and β2- adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ. Res. 56:884–894.PubMedGoogle Scholar
  14. Bristow, M. R., Kantrowitz, N. E., Ginsburg, R., and Fowler, M. B. 1985. -Adrenergic Function in Heart Muscle Disease and Heart Failure. J. Mol. Cell. Cardiol. 17(2):41–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Swedberg, K., Waagstein, F., Hjalmarson, A., and Wallentin, I. 1979. Prolongation of survival in congestive cardiomyopathy by beta-receptor blockade. Lancet 1:1374–1376.PubMedCrossRefGoogle Scholar
  16. 16.
    Swedberg, K., Hjalmarson, A., Waagstein, F., and Wallentin, I. 1980. Beneficial effects of long-term beta blockade in congestive cardiomyopathy. Br. Heart J. 44:117–133.PubMedCrossRefGoogle Scholar
  17. 17.
    Waagstein, F., Hjalmarson, A., Varnauskas, E., and Wallentin, I. 1975. Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br. Heart J. 37:1022–1036.PubMedCrossRefGoogle Scholar
  18. 18.
    Opie, L.H., Walpoth, B., and Barsacchi, R. 1985. Calcium and Catecholamines: Relevance to Cardiomyopathies and Significance in Therapeutic Strategies. J. Mol. Cell. Cardiol. 17(2):21–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Fozzard, H.A. 1977. Heart: excitation-contraction coupling. Ann. Rev. Physiol. 39:201–210.CrossRefGoogle Scholar
  20. 20.
    Bassingthwaighte, J.B. and Reuter, H. 1972. Calcium movements and excitation-contraction coupling in cardiac cells. In Electrical Phenomena in the Heart, De Mello, W.C., ed., pp. 353–395. New York: Academic Press.Google Scholar
  21. 21.
    Morad, M., and Goldman, Y. 1973. Excitation-contraction coupling in heart muscle: membrane control of development of tension. In Progress in Biophysics and Molecular Biology, vol. 27, Butler, J.A.V., and Noble, D., eds. pp. 257–313. Oxford: Pergamon Press.Google Scholar
  22. 22.
    Antoni, H. Elementary events in excitation-contraction coupling of the mammalian myocardium. Basic Res. Cardiol. 72:140–146.Google Scholar
  23. 23.
    Edman, K. A.P., and Johannsson, M. 1976. The contractile state of rabbit papillary muscle in relation to stimulation frequency. J. Physiol. 254:565–581.PubMedGoogle Scholar
  24. 24.
    Wohlfart, B. 1979. Relationships between peak force, action potential duration and stimulus interval in rabbit myocardium. Acta Physiol. Scand. 106:395–409.PubMedCrossRefGoogle Scholar
  25. 25.
    Langer, G. A. 1980. The role of calcium in the control of myocardial contractility: An update. J. Mol. Cell. Cardiol. 12:231–239.PubMedCrossRefGoogle Scholar
  26. 26.
    Mensing, H.J., and Hilgemann, D.W. 1981. Inotropic effects of activation and pharmacological mechanisms in cardiac muscle. Trends Pharmac. Sci. 2:303–307.CrossRefGoogle Scholar
  27. 27.
    Yue, D.T., Burkhoff, D., Franz, M.R., Hunter, W.C., and Sagawa, K. 1985. Post- extrasystolic potentiation of the isolated canine left ventricle. Relationship to mechanical restitution. Circ Res. 56:340–350.PubMedGoogle Scholar
  28. 28.
    Burkhoff, D., Yue, D.T., Franz, M.R., Hunter, W.C., Sunagawa, K., Maughan, W.L., and Sagawa, K. Quantitative comparison of the force-interval relationships of the canine right and left ventricles. Circ. Res. 54:468–473.Google Scholar
  29. 29.
    Sutko, J.L., Ito, K., and Kenyon, J.L. 1985. Ryanodine: a modifier of sarcoplasmic reticulum calcium release in striated muslce. Fed. Proc. 44:2984–2988.PubMedGoogle Scholar
  30. 30.
    Wier, W.G., Yue, D.T., and Marban, E. 1985. Effects of ryanodine on intracellular Ca2+ transients in mammalian cardiac muscle. Fed. Proc. 44:2989–2993.PubMedGoogle Scholar
  31. 31.
    Wier, W. G., and Yue, D. T. 1986. Intracellular, calcium, transients underlying the short- term force-interval relationship in ferret ventricular myocardium. J. Physiol, (in press)Google Scholar
  32. 32.
    Fabiato, A. and Baumgarten, C.M. 1984. Methods for detecting calcium release from the sarcoplasmic reticulum of skinning cardiac cells and the relationships between calculated transsarcolemmal calcium movements and calcium release. In Physiology and Pathophysiology of the Heart, Sperelakis, N., ed., pp. 215–254. Boston: Martinus Nijhoff Publishing.Google Scholar
  33. 33.
    Morgan, J.P. 1985. The effects of digitalis on intracellular calcium transients in mammalian working myocardium as detected with aequorin. J. Mol. Cell. Cardiol. 17:1065–1075.PubMedCrossRefGoogle Scholar
  34. 34.
    Fabiato, A. 1986. Inositol1,4,5 trisophosphate-induced release of Ca2+ from the sarcoplasmic reticulum of skinning cardiac cells.Biophys. J. 49:190a.Google Scholar
  35. 35.
    Lamers, J.M.J., Stinis, J.T., Kort, W.J., and Huelsmann, W.C. 1978. Biochemical studies on the sarcolemmal function in the hypertrophied rabbit heart. J. Mol. Cell. Cardiol. 10:235–248.PubMedCrossRefGoogle Scholar
  36. 36.
    Villani, F.P., Pelosi, G., Agliati, G., Piccinini, F., and Pensa, P. 1976. Calcium exchangeable fraction of sarcoplasmic reticulum in hypertrophic dog heart. Pharmacology 14:140–147.PubMedCrossRefGoogle Scholar
  37. 37.
    Wyse, R.K.H., and Welham, K.C., Jones, M., Silove, E. D., de Leval, M. R. 1983. Hemodynamics, regional myocardial blood flow, and sarcoplasmic reticulum calcium uptake in right ventricular hypertrophy and failure. In Advances in Mycocardiology, vol. 4, Chazov, E., Saks, V., and Rona, G., eds., pp. 97–105. New York: Plenum Medical Book Co.Google Scholar
  38. 38.
    Lamers, J.M.J., and Stinis, J.T. 1979. Defective calcium pump in the sarcoplasmic reticulum of the hypertrophied rabbit heart. Life Sci. 34:2313–2320.CrossRefGoogle Scholar
  39. 39.
    Dhalla, N.S., Das, P.K., and Sharma, G.P. 1978. Subcellular basis of cardiac contractile failure.J. Mol. Cell. Cardiol. 10:363–385.PubMedCrossRefGoogle Scholar
  40. 40.
    Lentz, R. M. Harrison, Jr. C. E, Dewey, J. D, Barnhorst, D. A., Danielson, G. K., and Pluth, J. R. 1978. Functional evaluation of cardiac sarcoplasmic reticulum and mitochondria in human pathologic states. J. Mol. Cell. Cardiol. 10:3–30.PubMedCrossRefGoogle Scholar
  41. 41.
    Prasad, K., Khatter, J.C., and Bharadwaj, B. 1979. Intra- and extracellular electrolytes and sarcolemmal AT Pase in the failing heart due to pressure overload in dogs. Cardiovasc. Res. 13:95–104.PubMedCrossRefGoogle Scholar
  42. 42.
    Limas, C.J. and Cohn, J.N. 1977. Defective calcium transport by cardiac sarcoplasmic reticulum in spontaneously hypertensive rats. Circ. Res. 40:1, 62–69.Google Scholar
  43. 43.
    Gwathmey, J.K. and Morgan, J.P. 1985. Altered calcium handling in experimental pressure- overload hypertrophy in the ferret. Circ. Res. 57:836–843.PubMedGoogle Scholar
  44. 44.
    Ito, Y., Suko, J., and Chidsey, C.A. 1974. Intracellular calcium and myocardial contractility v. calcium uptake of sarcoplasmic reticulum fractions in hypertrophied and failing rabbit hearts. J. Mol. Cell. Cardiol. 6:237–247.PubMedCrossRefGoogle Scholar
  45. 45.
    Mead, R.J., Peterson, M.B., and Welty, J.D., 1971. Sarcolemmal and sarcoplasmic reticular ATPase activities in the failing canine heart. Circ. Res. 29:14–20.PubMedGoogle Scholar
  46. 46.
    Gertz, E.W., Stam, Jr. A., Bajusz, E., and Sonnenblick, E.H. 1972. A biochemical defect in the function of the sarcoplasmic reticulum in the hereditary cardiomyopathy of the Syrian hamster. In Recent Advances in Studies on Cardiac Structure and Metabolism, vol. 1, Bajusz, E. and Rona, G., eds., pp. 243–250. Baltimore: University Park Press.Google Scholar
  47. 47.
    Anderson, P.A.W., Manring, A., Arentzen, C.E., Rankin, J.S., and Johnson, E.A. 1977. Pressure-induced hypertrophy of cat right ventricle. An evaluation with the force-interval relationship. Circ. Res. 41:582–588.PubMedGoogle Scholar
  48. 48.
    Pannier, J.L. 1971. Contractile state of papillary muscles obtained from cats with moderate right ventricular hypertrophy. Arch. Int. Physiol. Biochim. 79:743–752.PubMedCrossRefGoogle Scholar
  49. 49.
    Spann, Jr. J.F., Buccino, R.A., Sonnenblick, E.H., and Braunwald E. 1967. Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ. Res. 21:341–354.PubMedGoogle Scholar
  50. 50.
    Grimm, A.F., Kubota, R., and Whitehorn, W.V. 1963. Properties of myocardium in cardiomegaly. Circ. Res. 12:118–124.PubMedGoogle Scholar
  51. 51.
    Fisher, V.J. Kavaler, F. 1971. Maximal force development by hypertrophied right ventricular papillary muscles remaining in situ. In Cardiac Hypertrophy, Alpert, N.R., ed., pp. 371–385. New York: Academic Press.Google Scholar
  52. 52.
    Bing, O.H.L., Matsushita, S., Fanburg, B.L., Levine, H.J. 1971. Mechanical properties of rat cardiac muscle during experimental hypertrophy. Circ. Res. 28:234–245.PubMedGoogle Scholar
  53. 53.
    Kerr, A.R., Winterberger, A.R., and Giambattista, M. 1961. Tension developed by papillary muscles from hypertrophied rat hearts. Circ. Res. 9:103–105.PubMedGoogle Scholar
  54. 54.
    Anderson, P.A.W., Manring, A., Serwer, G.A., Benson, D.W., Edwards, S.B., Armstrong, B.E., Sterba, R.J., and Floyd IV, R. D. The force-interval relationship of the left ventricle. Circulation 60:334–348.Google Scholar
  55. 55.
    Anderson, P.A.W., Manring, A. Johns, P., Gilbert, P. P., and Johnson, E. A. 1977. Force- interval relationship in the intact heart. Circulation 56(2):231.Google Scholar
  56. 56.
    Braveny, P, and Kruta, V. 1958. Dissociation de deux facteurs: restitution et potentiation dans Taction de l’intervale sur l’amplitude de la contraction du myocarde. Arch. Int. Physiol. Biochim. 66:633–652.PubMedCrossRefGoogle Scholar
  57. 57.
    Anderson, P.A.W., Manring, A., Sommer, J.R., and Johnson, E.A. 1976. Cardiac muscle: An attempt to relate structure to function. J. Mol. Cell. Cardiol. 8:123–143.PubMedCrossRefGoogle Scholar
  58. 58.
    Nassar, R., Reedy, M.C., and Anderson, P.A.W. 1983. Isolated ventricular myocytes: Electron microscopic and contractile characteristics. Fed. Proc. 43:819.Google Scholar
  59. 59.
    Nassar, R., Anderson, P.A.W., and Reedy, M.C. 1984. Sarcomere dynamics in the isolated myocyte: the interaction of calcium and the pattern of stimulation. Biophys. J. 45:158a.Google Scholar
  60. 60.
    Anderson, P.A.W., Reedy, M.C., and Nassar, R. 1986. Structure-function comparisons in cardiac myocytes from adult and three-week-old rabbits. Biophys. J. 49:81a.Google Scholar
  61. 61.
    Bassett, A.L. and Gelband, H. 1973. Chronic partial occlusion of the pulmonary artery in cats change in ventricular action potential configuration during early hypertrophy. Circ. Res. 32:15–26.PubMedGoogle Scholar
  62. 62.
    Kaufmann, R.L., Homburger, H., and Wirth, H. 1971. Disorder in excitation-contraction coupling of cardiac muscle from cats with experimentally produced right ventricular hypertrophy. Circ. Res. 28:346–357.PubMedGoogle Scholar
  63. 63.
    Konishi, T. 1965. Electrophysiological study on hypertrophied cardiac muscle experimentally produced in the rabbit. Jap. Circ. J. 29:491–503.PubMedCrossRefGoogle Scholar
  64. 64.
    Yue, D.T. 1986. Interrelations between intracellular calcium, strength of contraction, and stimulus interval in the mammalian heart. (Ph.D. dissertation, Johns Hopkins University, Baltimore, 1986).Google Scholar
  65. 65.
    Sommer, J.R. and Johnson, E.A. 1979. Ultrastructure of cardiac muscle. In Handbook of Physiology, section 2, volume 1, Berne, R. M. Sperelakis, N., and Geiger, S. R. eds., pp. 113–186. Bethesda, American Physiological Society.Google Scholar
  66. 66.
    Jorgensen, A.O., Shen, A. C-Y, and Campbell, K.P. 1985. Ultrastructural localization of calsequestrin in adult rat atrial and ventricular muscle cells. J. Cell Biol. 101:257–268.PubMedCrossRefGoogle Scholar
  67. 67.
    Fabiato, A. 1983. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. 245:C1-C14.PubMedGoogle Scholar
  68. 68.
    Allen, D.G., Jewell, B.R., and Wood, E.H., 1976. Studies of the contractility of mammalian myocardium at low rates of stimulation. J. Physiol. 254:1–17.PubMedGoogle Scholar
  69. 69.
    Hiraoka, M. and Sano, T. 1976. Role of slow inward current in the genesis of ventricular arrhythmia. Jap. Circ. J. 40:1419–1427.PubMedCrossRefGoogle Scholar
  70. 70.
    Anderson, P.A.W., Manring, A., and Johnson, E.A. 1977. The force of contraction of isolated papillary muscle: a study of the interaction of its determining factors.J. Mol. Cell. Cardiol. 9:131–150.PubMedCrossRefGoogle Scholar
  71. 71.
    Bers, D.M. 1983. Early transient depletion of extracellular Ca during individual cardiac muscle contraction. Am. J. Physiol. 244:H462-H468.PubMedGoogle Scholar
  72. 72.
    Fabiato, A. and Fabiato, F. 1978. Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and new born rat ventricles. Ann. N.Y. Acad. Sci. 307:491–522.PubMedCrossRefGoogle Scholar
  73. 73.
    Pidgeon, J., Lab, M., Seed, A., Elzinga, G., Papadoyanms, D., and Noble, M.I.M. 1980. The contractile state of cat and dog heart in relation to the interval between beats. Circ. Res. 47:559–567.PubMedGoogle Scholar
  74. 74.
    Burkhoff, D., Yue, D.T., Franz, M.R., Hunter, W.C., and Sagawa, K. 1984. Mechanical restitution of isolated perfused canine left ventricles. Am. J. Physiol. 246:H8-H16.PubMedGoogle Scholar
  75. 75.
    Anderson, P.A.W., Manring, A., and Johnson, E.A. 1973. Force-frequency relationship: a basis for a new index of cardiac contractility? Circ. Res. 33:665–671.PubMedGoogle Scholar
  76. 76.
    Anderson, P.A.W., Rankin, J.S., Arentzen, C.E., Anderson, R.W., and Johnson, E.A. 1976. Evaluation of the force-frequency relationship as a descriptor of the inotropic state of canine left ventricular myocardium. Circ. Res. 39:832–839.PubMedGoogle Scholar
  77. 77.
    Manring, A. and Anderson, P.A.W. 1980. The contractility of cardiac muscle. CRC Crit. Rev. Bioeng. 4:165–201.Google Scholar
  78. 78.
    Franz, M. R., Schaefer, J., Schoettler, M., Seed, W. A., and Noble, M. I. M. 1983. Electrical and mechanical restitution of the human heart at different rates of stimulation. Circ. Res. 53:815–822.PubMedGoogle Scholar
  79. 79.
    Anderson, P.A.W., Manring, A., Arentzen, C.E., Rankin, J.S., and Johnson, E.A. 1957. Pressure-induced hypertrophy of cat right ventricle. An evaluation with the force-interval relationship. Circ. Res. 41:582–588.Google Scholar
  80. 80.
    Maylie, J.G. 1982. Excitation-contraction coupling in neonatal and adult myocardium of cat. Am. J. Physiol. 242:H834-H843.PubMedGoogle Scholar
  81. 81.
    Gwathmey, J.K. and Morgan, J.P. 1985. Altered calcium handling in experimental pressure- overload hypertrophy in the ferret. Circ. Res. 57:836–843.PubMedGoogle Scholar
  82. 82.
    Meerson, F.Z. and Kapelko, VI. 1972. The contractile function of the myocardium in two types of cardiac adaptation to a chronic load. Cardiology 57:183–199.PubMedCrossRefGoogle Scholar
  83. 83.
    Sasayama, S., Ross, Jr. J., Franklin, D., Bloor, C.M., Bishop, S., and Dilley, R.B. Adaptations of the left ventricle to chronic pressure overload. Circ. Res. 38:172–178.Google Scholar
  84. 84.
    Anderson, P.A.W., Glick, K.L., Manring, A., and Crenshaw, C., Jr. 1984. Developmental changes in cardiac contractility in fetal and postnatal sheep: in vitro and in vivo.Am. J. Physiol. 247:H371-H379.PubMedGoogle Scholar
  85. 85.
    Schwarz, F., Thormann, J. and Winkler, B. 1975. Frequency potentiation and post- extrasystolic potentiation in patients with and without coronary arterial disease. Br. Heart J. 37:514–519.PubMedCrossRefGoogle Scholar
  86. 86.
    Van Der Werf, T., Van Poelgeest, R., Herbschleb, H.H., Meijler, F.L. 1976. Post- extrasystolic potentiation in man. Eur. J. Cardiol. 4; 131–141.Google Scholar
  87. 87.
    Kvasnicka, J., Liander, B., Broman, H., and Varnauskas, E. 1975. Quantitative evaluation of post-ectopic beats in the normal and failing human heart using indices derived from catheter-tip manometer readings. Cardiovasc. Res. 9:336–341.PubMedCrossRefGoogle Scholar
  88. 88.
    Burkhoff, D., Yue, D.T., Oikawa, R., Flaherty, J.T., Herskowitz, A., Franz M.R., Stewart, S., Baumgartner, W.A., Schaefer, J., Reitz, B.A., Sagawa, K. 1984. Insights into the pathophysiology of cardiomyopathy from studies of isolated supported human hearts. Circulation 70(2):46Google Scholar
  89. 89.
    Sink, J.D., Anderson, P.A.W., and Wechsler, A.S. 1985. Postoperative left ventricular contractility in the cardiac surgical patient. An evaluation of the force-interval relationship. Ann. Thor. Surg. 40:475–482.CrossRefGoogle Scholar
  90. 90.
    Ito, Y., Suko, J., and Chidsey, C.A. 1974. Intracellular calcium and myocardial contractility. V. Calcium uptake of sarcoplasmic reticulum fractions in hypertrophied and failing rabbit hearts. J. Mol. Cell. Cardiol. 6:237–247.PubMedCrossRefGoogle Scholar
  91. 91.
    Singh, S., White, F.C., and Bloor, C.M. 1982. Effect of acute exercise stress in cardiac hypertrophy II. Quantitative ultrastructural changes in the myocardial cell. Virchows Arch. 39:293–303.CrossRefGoogle Scholar
  92. 92.
    Manring, A., Anderson, P.A.W., Nassar, R., and Howe, W.R. 1983. Can sympathomimetic agents be classified by their action on the force-interval relationship? Life Sci. 32:329–336.PubMedCrossRefGoogle Scholar
  93. 93.
    Ginsburg, R., Bristow, M.R., Billingham, M.E., Stinson, E.B., Schroeder, J.S., and Harrison, D.C. 1983. Study of the normal and failing isolated human heart: Decreased response of failing heart to isoproterenol. Am. Heart J. 106:535–540.PubMedCrossRefGoogle Scholar
  94. 94.
    Ginsburg, R., Esserman, L.J., and Bristow, M.R. 1983. Myocardial performance and extracellular ionized calcium in a severely failing human heart. Ann. Intern. Med. 98:603–606.PubMedGoogle Scholar
  95. 95.
    Chidsey, C., Kaiser, G.A., Sonnenblick, E.H., Spann, J.F., and Braunwald, E. 1964. Cardiac norepinephrine stores in experimental heart failure in the dog. J. Clin. Invest. 43:2386–2393.PubMedCrossRefGoogle Scholar
  96. 96.
    Chidsey, C., Braunwald, E., Morrow, A.G., and Mason, D.T. 1963. Myocardial norepinephrine concentration in man. Effects of reserpine and of congestive heart failure. New Eng. J. Med. 269:653–658.PubMedCrossRefGoogle Scholar
  97. 97.
    Sole, M.J., Helke, C.J., and Jacobowitz, D.M. 1982. Increased dopamine in the failing hamster heart: transvesicular transport of dopamine limits the rate of norepinephrine synthesis. Am. J. Cardiol. 49:1682–1690.PubMedCrossRefGoogle Scholar
  98. 98.
    Sole, M.J., Lo, C-M., Laird, C.W., Sonnenblick, E.H., and Wurtman, R.J. 1975. Norepinephrine turnover in the heart and spleen of the cardiomyocpathic Syrian hamster. Circ. Res. 37:855–862.PubMedGoogle Scholar
  99. 99.
    Thomas, J.A., and Marks, B.H. 1978. Plasma norepinephrine in congestive heart failure. Am. J. Cardiol. 41:233–243.PubMedCrossRefGoogle Scholar
  100. 100.
    Bristow, M.R., Ginsburg, R., Minobe, W., Cubicciotti, R.S., Sageman, W.S., Lurie, K., Billingham, M.E., Harrison, D.C., and Stinson, E.B. 1982. Decreased catecholamine sensitivity and -adrenergic-receptor density in failing human hearts. New Eng. J. Med. 307:205–211.PubMedCrossRefGoogle Scholar
  101. 101.
    Bristow, M.R. 1984. Myocardial -adrenergic receptor downregulation in heart failure. Int. J. Cardiol. 5:648–652.PubMedCrossRefGoogle Scholar
  102. 102.
    Stull, J.T., Manning, D.R., High, C.W., and Blumenthal, D.K. 1980. Phosphorylation of contractile proteins in heart and skeletal muscle. Fed. Proc. 39:1552–1557.PubMedGoogle Scholar
  103. 103.
    Kranias, E.G. and Solaro, R.J. 1983. Coordination of cardiac sarcoplasmic reticulum and myofibrillar function by protein phosphorylation. Fed. Proc. 42:33–38.PubMedGoogle Scholar
  104. 104.
    Winegrad, S., Mlellan, G., Horowits, R., Tucker, M., Lin, L-E., and Weisberg, A. 1983. Regulation of cardiac contractile proteins by phosophorylation. Fed. Proc. 42:39–44.PubMedGoogle Scholar
  105. 105.
    Yamada, S., Yamamura, H.I., and Roeske, W.R. 1980. Ontogeny of mammalian cardiac (α1-adrenergic receptors.Eur. J. Phartmac. 68:217–221.CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1987

Authors and Affiliations

  • Page A. W. Anderson

There are no affiliations available

Personalised recommendations