Advertisement

Organization of Conducting Systems in “Simple” Invertebrates: Porifera, Cnidaria and Ctenophora

  • Richard A. Satterlie
  • Andrew N. Spencer

Abstract

The following review summarizes recent discoveries in three groups of multicellular animals in which the phrase “central nervous system” does not fit the usual conception of a centralized ganglion, or group of ganglia, located in the anterior portion of a bilaterally symmetrical animal. The radial symmetry of cnidarians and ctenophores presents unique problems for the acquisition and integration of sensory information as well as the distribution of motor output. Here we provide insights into how behavior is controlled in the “most primitive” of radially symmetrical animals, cnidarians and ctenophores. In addition, recent advances in the neurobiology of the Porifera are reviewed. This review is not presented as an encyclopedic account of all past work on these groups, but rather as a sampling of past and current studies that best illustrate general properties of these groups and highlight the most recent developments and directions of ongoing research.

Keywords

Conducting System Nerve Ring Giant Axon Apical Organ Chemical Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afzelius BA (1961) The fine structure of the cilia from ctenophore swimming-plates. J Biophys Biochem Cytol 9: 383–394.PubMedGoogle Scholar
  2. Anctil M (1987) Neural control mechanisms in bioluminescence. (This volume).Google Scholar
  3. Anderson PAV (1976) An electrophysiologicasl study of mechanisms controlling polyp retraction in colonies of the scleractinian coral Goniopora lobata. J Exp Biol 65: 381–393.PubMedGoogle Scholar
  4. Anderson PAV (1979) Ionic basis of action potentials and bursting activity in hydromedusan jellyfish Polyorchis penicillatus. J Exp Biol 78: 299–302.Google Scholar
  5. Anderson PAV (1980) Epithelial conduction: its properties and functions. Prog Neurobiol 15: 161–203.PubMedGoogle Scholar
  6. Anderson PAV (1984) The electrophysiology of single smooth muscle cells isolated from the ctenophore Mnemiopsis. J Comp Physiol B 154: 257–268.Google Scholar
  7. Anderson PAV (1985) Physiology of a bidirectional, excitatory, chemical synapse. J Neurophysiol 53: 821–835.PubMedGoogle Scholar
  8. Anderson PAV, Case JF (1975) Electrical activity associated with luminescence and other colonial behaviour in the pennatulid Renilla kollikeri. Biol Bull Mar Biol Lab, Woods Hole 149: 80–95.Google Scholar
  9. Anderson PAV, Mackie GO (1977) Electrically coupled, photosensitive neurons control swimming in a jellyfish. Science 197: 186–188.PubMedGoogle Scholar
  10. Anderson PAV, McKay MC (1985) Evidence for a proton-activated chloride current in coelenterate neurons. Biol Bull 169: 652–660.Google Scholar
  11. Anderson PAV, Schwab WE (1981) The organization and structure of nerve and muscle in the jellyfish Cyanea capillata (Coelenterata: Scyphozoa). J Morphol 170: 383–399.Google Scholar
  12. Anderson PAV, Schwab WE (1982) Recent advances and model systems in coelenterate neurobiology. Prog Neurobiol 19: 213–236.PubMedGoogle Scholar
  13. Anderson PAV, Schwab WE (1983) Action potential in neurons of motor nerve net of Cyanea (Coelenterata). J Neurophysiol 50: 671–683.PubMedGoogle Scholar
  14. Arkett SA, Spencer AN (1986a) Neuronal mechanisms of a hydromedusan shadow reflex I. Identified reflex components and sequence of events. J Comp Physiol 159: 201–213.Google Scholar
  15. Arkett SA, Spencer AN (1986b) Neuronal mechanisms of hydromedusan shadow reflex II. Graded response of relfex components, possible mechanisms of photic integration, and function significance. J Comp Physiol 159: 215–225.Google Scholar
  16. Barnes RD (1985) Current perspectives on the origins and relationships of lower invertebrates. In: Conway S, Morris SC, George JD, Gibson R, Piatt HM (eds) The origins and relationships of lower invertebrates. The Systematics Association Special Volume 28. Clarendon Press, Oxford, pp 360–367.Google Scholar
  17. Bergquist PR (1985) Poriferan relationships. In: Conway S, Morris SC, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. The Systematics Association Special Volume 28. Clarendon Press, Oxford, pp 14–27.Google Scholar
  18. Berking S (1986) Is homarine a morphagen in the marine hydroid Hydractinia?. Wilhelm Roux’s Arch Dev Biol 195: 33–38.Google Scholar
  19. Bidder GP (1923) The relationship of the form of a sponge to its currents. Q J Microsc Sci 67: 293–323.Google Scholar
  20. Brien P (1973) Les demosponges: morphologie et reproduction. In: Grasse PP (ed) Traité de zoologie: Anatomie, systématique, biologie. Vol. 3. Masson, Paris, pp 133–461.Google Scholar
  21. Bullock TH (1943) Neuromuscular facilitation in scyphomedusae. J Cell Comp Physiol. 22: 251–272.Google Scholar
  22. Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. Vol. I. W.H. Freeman, San Francisco and London.Google Scholar
  23. Burnett AL (1961) The growth process in Hydra. J Exp Zool 146: 21–84.Google Scholar
  24. Burnett AL, Diehl NA (1964) The nervous system of Hydra. I. Types, distribution and origin of nerve elements. J Exp Zool 157: 217–226.PubMedGoogle Scholar
  25. Chain BM, Bone Q, Anderson PAV (1981) Electrophysiology of a myoid epithelium in Chelophyes (Coelenterata: Siphonophora). J Comp Physiol 143: 329–338.Google Scholar
  26. Chapman DM (1974) Cnidarian histology. In: Muscatine L, Lenhoff HM (eds) Coelenterate Biology. Reviews and perspectives. Academic Press, New York, pp 1–92.Google Scholar
  27. Cottrell GA, Davies NW (1987) Multiple receptor sites for a molluscan peptide (FMRFamide) and related peptides of Helix. J Physiol (in press).Google Scholar
  28. David CN (1973) A quantitative method for maceration of Hydra tissue. Wilhelm Roux’s Arch Entwicklungsmech Org 171: 259–268.Google Scholar
  29. Davis LE, Burnett AL, Haynes JF (1968) Histological and ultrastructural study of the muscular and nervous system in Hydra. II. Nervous system. J Exp Zool 167: 295–332.PubMedGoogle Scholar
  30. Dickinson P (1978) Conduction systems controlling expansion-contraction behavior in the sea pen Ptilosarcus gurneyi. Mar Behav Physiol 5: 163–183.Google Scholar
  31. Dunne JF, Javois LC, Huang LW, Bode HR (1985) A subset of cells in the nerve-net of Hydra oligactis defined by a monoclonal antibody: its arrangement and development. Dev Biol 109: 41–53.PubMedGoogle Scholar
  32. Eimer T (1878) Die Medusen: Physiologisch und Morphologisch auf ihr Nervensystem. Tubingen.Google Scholar
  33. Epp L, Tardent P (1978) The distribution of nerve cells in Hydra attenuata Pall. Wilhelm Roux’s Arch Dev Biol 185: 185–193.Google Scholar
  34. Franc J-M (1978) Organization and function of ctenophore colloblasts: an ultrastrunctural study. Biol Bull Mar Biol Lab, Woods Hole 155: 527–541.Google Scholar
  35. Grimmelikhuijzen CJP (1983a) Coexistence of neuropeptides in Hydra. Neurosci 9: 837–845.Google Scholar
  36. Grimmelikhuijzen CJP (1983b) FMRFamide immunoreactivity is generally occurring in the nervous system of coelenterates. Histochem 78: 361–381.Google Scholar
  37. Grimmelikhuijzen CJP (1985) Antisera to the sequence Arg-Phe-amide visualiza neuronal centralization in hydroid polyps. Cell Tissue Res 241: 171–182.Google Scholar
  38. Grimmelikhuijzen CJP, Spencer AN (1984) FMRFamide immunoreactivity in the nervous system of the medusa Polyorchis penicillatus. J Comp Neurol 230: 361–371.PubMedGoogle Scholar
  39. Grimmelikhuijzen CJP, Sundler F, Rehfeld JF (1980) Gastrin/CCK-like immunoreactivity in the nervous system of coelenterates. Histochem 69: 61–68.Google Scholar
  40. Grimmelikhuijzen CJP, Balfe A, Emson PC, Powell D, Sundler F (1981a) Substance P-like immunoreactivity in the nervous system of Hydra. Histochem 71: 325–333.Google Scholar
  41. Grimmelikhuijzen CJP, Carraway RE, Rokaeus A, Sundler F (1981b) Neurotensin-like immunoreactivity in the nervous system of Hydra. Histochem 72: 199–209.Google Scholar
  42. Grimmelikhuijzen CJP, Dockray GJ, Yanaihara N (1981c) Bombesin-like immunoreactivity in the nervous system of Hydra. Histochem 73: 171–180.Google Scholar
  43. Grimmelikhuijzen CJP, Dierickx K, Boer GJ (1982a) Oxytocin/vasopressin- like immunoreactivity is present in the nervous system of Hydra. Neurosci 7: 3191–3199.Google Scholar
  44. Grimmelikhuijzen CJP, Dockray GJ, Schot LPC (1982b) FMRFamide-like immunoreactivity in the nervous system of Hydra. Histochem 73: 499–508.Google Scholar
  45. Grimmelikhuijzen CJP, Spencer AN, Carre D (1986) Organization of the nervous system of physonectid siphonophores. Cell Tissue Res 246: 463–479.Google Scholar
  46. Grimmelikhuijzen CJP, Graff D, Spencer AN (1987) Structure, location and possible actions of Arg-Phe-amide peptides in coelenterates. In: Thorndyke MC, Goldsworthy G (eds) Invertebrate peptides and amines. Cambridge University Press.Google Scholar
  47. Hadzi J (1963) The evolution of the Metazoa. Pergamon Press, London.Google Scholar
  48. Haeckel E (1874) Die Gastraea-Theorie, die phylogenetische Klassification des Thierreichs und die Homolgie der kemiblatter. Jena Z Naturw 8: 1–55.Google Scholar
  49. Hagiwara S, Yoshida S, Yoshida M (1981) Transient and delayed potassium currents in the egg cell membrane of the coelenterate Renilla köllikeri. J Physiol 318: 123–141.PubMedGoogle Scholar
  50. Heimfeld S, Bode HR (1985) Growth regulation of the interstitial cell population in Hydra. Dev Biol 297–307.Google Scholar
  51. Hernandez-Nicaise ML (1968) Distribution et ultrastructure des synapses symétriques dans le système nerveux des Cténaires. C Hebd Seanc Acad Sci, Paris 267: 1731–1734.Google Scholar
  52. Hernandez-Nicaise ML (1973a) Le système nerveux des Cténaires. I. Structure et ultrastructure des réseaux épitheliaux. Z Zellforsch Mikrosk Anat 137: 223–250.PubMedGoogle Scholar
  53. Hernandez-Nicaise ML (1973b) Le système nerveux des Cténaires. II. Les éléments nerveux intramésogleens chez les Beroides et les Cydippidés. Z Zellforsch Mikrosk Anat 143: 117–133.PubMedGoogle Scholar
  54. Hernandez-Nicaise ML (1973c) The nervous system of Ctenophora. III. Ultrastructure of synapses. J Neurocytol 2: 249–263.PubMedGoogle Scholar
  55. Hernandez-Nicaise ML (1974) Ultrastructural evidence for a sensory-motor neuron in ctenophora. Tissue Cell 6: 43–47.PubMedGoogle Scholar
  56. Hernandez-Nicaise ML, Amsellem J (1980) Ultrastructure of the giant smooth muscle fiber of the Ctenophore Beroe ovata. J Ultrastruct Res 72: 151–168.PubMedGoogle Scholar
  57. Hernandez-Nicaise ML, Mackie GO, Meech RW (1980) Giant smooth muscle cells of Beroe: Ultrastructure, innervation and electrical properties. J Gen Physiol 75: 79–105.PubMedGoogle Scholar
  58. Hernandez-Nicaise ML, Bilbaut A, Malaval L, Nicaise G (1982) Isolation of functional giant smooth muscle cells from an invertebrate: structural features of relaxed and contracted fibers. Proc Natl Acad Sci USA 79: 1884–1888.PubMedGoogle Scholar
  59. Horridge GA (1954) The nerves and muscles of medusae. I. Conduction in the nervous system of Aurelia aurita Lamarck. J Exp Biol 31: 594–600.Google Scholar
  60. Horridge GA (1956a) The nervous system of the ephyra larva of Aurelia aurita. Q J Microsc Sci 97: 59–74.Google Scholar
  61. Horridge GA (1956b) The nerves and muscles of medusae. V. Double innervation in scyphozoa. J Exp Biol 33: 366–383.Google Scholar
  62. Horridge GA (1957) The co-ordination of the protective retraction of coral polyps. Phil Trans R Soc 240: 495–529.Google Scholar
  63. Horridge GA (1959) The nerves and muscles of medusae. VI. The rhythm. J Exp Biol 36: 72–91.Google Scholar
  64. Horridge GA (1965a) Relations between nerves and cilia in ctenophores. Amer Zool 5: 357–375.Google Scholar
  65. Horridge GA (1965b) Non-motile sensory cilia and neuromuscular junctions in a ctenophore independent effector organ. Proc R Soc B162: 333–350.Google Scholar
  66. Horridge GA (1965c) Intracellular action potentials associated with the beating of the cilia in ctenophore comb plate cells. Nature, 205: 602.Google Scholar
  67. Horridge GA (1966) Pathways of co-ordination in ctenophores. In: Rees WJ (ed) The Cnidaria and their evolution, Symposium, Zoological Society of London. Vol. 16, pp 247–266.Google Scholar
  68. Horridge GA (1968) Interneurons. Freeman, San Francisco.Google Scholar
  69. Horridge GA (1974) Recent studies on the Ctenophora. In: Muscatine L, Lenhoff HM (eds) Coelenterate biology: Reviews and new perspective. Academic Press, New York, pp 439–468.Google Scholar
  70. Horridge GA, Mackay B (1962) Naked axons and symmetrical synapses in coelenterates. Q J Microsc Sci. 103: 531–541.Google Scholar
  71. Horridge Ga, Mackay B (1964) Neurociliary synapses in Pleurobrachia (Ctenophora). Q J Microsc Sci 105: 163–174.Google Scholar
  72. Jackson AJ, McFarlane ID (1976) Delayed initiation of SS1 pulses in the sea anemone Calliactis parasitica: evidence for a fourth conducting system. J Exp Biol 65: 539–552.PubMedGoogle Scholar
  73. Jagersten G (1955) On the early phylogeny of the Metazoa. The bilat- erogastreaea theory. Zool Bidr Upps 30: 321–354.Google Scholar
  74. Jones WC (1962) Is there a nervous system in sponges? Biol Rev 37: 1–50.PubMedGoogle Scholar
  75. Josephson RK (1961) Repetitive potentials following brief electric stimuli in a hydroid. J Exp Biol 38: 579–593.Google Scholar
  76. Josephson RK (1966) Neuromuscular transmission in a sea anemone. J Exp Biol 45: 305–319.Google Scholar
  77. Josephson RK, Reiss RF, Worthy RM (1961) A simulation study of a diffuse conducting system based on coelenterate nerve nets. J Theor Biol 1: 460–487.PubMedGoogle Scholar
  78. Kass-Simon G (1982) Aspects of coelenterate membrane physiology. In: Podesta RB (ed) Membrane physiology of invertebrates. Marcel Decker, NY, pp 83–120.Google Scholar
  79. Kerfoot PAH, Mackie GO, Meech RW, Roberts A, Singla CL (1985) Neuromuscular transmission in the jellyfish Aglantha digitale. J Exp Biol 116: 1–25.PubMedGoogle Scholar
  80. King MG, Spencer AN (1979) Gap and septate junctions in the excitable endoderm of Polyorchis penicillatus (Hydrozoa: Anthomedusae). J Cell Sci 36: 391–400.PubMedGoogle Scholar
  81. Kinnamon JC, Westfall J (1981) A three-dimensional serial reconstruction of neuronal distributions in the hypostome of a Hydra. J Morphol 168: 321–329.Google Scholar
  82. Lawn ID (1975) An electrophysiological analysis of chemoreception in the sea anemone, Tealia felina. J Exp Biol 63: 525–536.Google Scholar
  83. Lawn ID (1976a) The marginal sphincter of the sea anemone Calliactis parasitica. II. Properties of the inhibitory response. J Comp Physiol 105: 301–311.Google Scholar
  84. Lawn ID (1976b) Swimming in the sea anemone Stomphia coccinea triggered by a slow conduction system. Nature 262: 708–709.PubMedGoogle Scholar
  85. Lawn ID (1982) Porifera. In: Shelton GAB (ed) Electrical conduction and behaviour in Simple invertebrates. Clarendon Press, Oxford, pp 49–72.Google Scholar
  86. Lawn ID, Mackie Go, Silver G (1981) A conduction system in a sponge. Science 211: 1169–1171.PubMedGoogle Scholar
  87. Lentz TL (1968) Primitive nervous systems. Yale University Press, New Haven.Google Scholar
  88. Lerner J, Mellen SA, Waldron I, Factor RM (1971) Neural redundancy and regularity of swimming beats in scyphozoan medusae. J Exp Biol 55: 177–184.PubMedGoogle Scholar
  89. Mackie GE (1970) Neuroid conduction and the evolution of conducting tissue. Q Rev Biol 45: 319–332.PubMedGoogle Scholar
  90. Mackie GO (1971) Neurological complexity in medusae: A report of central nervous organization in Sarsia. Actas del il Simposio Internacional de Zoofilogenia Salamance 269–280.Google Scholar
  91. Mackie GO (1973) Report on giant nerve fibres in Nanomia. Pubi Seto Mar Biol Lab: 745–756.Google Scholar
  92. Mackie GO (1975) Neurobiology of Stomotoca. II. Pacemakers and conduction pathways. J Neurobiol 6: 357–378.PubMedGoogle Scholar
  93. Mackie GO (1976a) Propagated spikes and secretion in a coelenterate glandular epithelium. J Gen Physiol 68: 313–325.PubMedGoogle Scholar
  94. Mackie GO (1976b) The control of fast and slow muscle contractions in the siphonophore stem. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Press, New York, pp 647–659.Google Scholar
  95. Mackie GO (1978) Coordination in physonectid siphonophores. Mar Behav Physiol 5: 325–346.Google Scholar
  96. Mackie GO (1979) Is there a conduction system in sponges? Colloques Int Cent Natn Rech Scient 291: 145–151.Google Scholar
  97. Mackie GO (1980) Slow swimming and cyclical “fishing” behavior in Aglantha digitale (Hydromedusae: Trachylina). Can J Fish Aquat Sci 37: 1550–1556.Google Scholar
  98. Mackie GO (1984) Fast pathways and escape behavior in Cnidaria. In: Eaton RC (ed) Neural mechanisms of startle behavior. Plenum Pubi Corp, p 15–42.Google Scholar
  99. Mackie GO, Carré D (1983) Coordination in a diphyid siphonophore. Mar Behav Physiol 9: 139–170.Google Scholar
  100. Mackie GO, Meech RW (1985) Separate sodium and calcium spikes in the same axon. Nature 313: 791–793.PubMedGoogle Scholar
  101. Mackie GO, Singla CL (1983) Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1883). Phil Trans R Soc Lond B 301: 365–400.Google Scholar
  102. Mackie GO, Passano LM, Pavans de Ceccatty M (1967) Physiologie du comportement de 1’Hydroméduse Sarsia tubulosa Sars. Les systèmes a conduction aneurale. C R Hebd Seans Acad Sci, Paris 264: 466–469.Google Scholar
  103. Mackie GO, Lawn ID, Pavans de Ceccatty M (1983) Studies on hexactinellid sponges. II. Excitability, conduction and coordination of responses in Rhabdocalyptus dawsoni (Lambe, 1973). Phil Trans R Soc Lond B 301: 401–418.Google Scholar
  104. Mackie GO, Anderson PAV, Singla CL (1984) Apparent absence of gap junctions in two classes of Cnidaria. Biol Bull 167: 120–123.Google Scholar
  105. Mackie GO, Singla CL, Stell WK (1985) Distribution of nerve elements showing FMRFamide-like immunoreactivity in hydromedusae. Acta Zool (Stockh) 66: 199–210.Google Scholar
  106. Marcus E (1958) On the evolution of animal phyla. Q Rev Biol 33: 24–58.Google Scholar
  107. Martin SM, Spencer AN (1982) Neurotransmitters in Coelenterates. Comp Biochem Physiol C 74: 1–14.Google Scholar
  108. McFarlane ID (1969a) Two slow conduction systems in the sea anemone Calliactis parasitica. J Exp Biol 51: 377–385.PubMedGoogle Scholar
  109. McFarlane ID (1969b) Co-ordination of pedal-disc detachment in the sea anemone Calliactis parasitica. J Exp Biol 51: 387–396.Google Scholar
  110. McFarlane ID (1970) Control of preparatory feeding behaviour in the sea anemone Tealia felina. J Exp Biol 53: 211–220.Google Scholar
  111. McFarlane ID (1973a) Spontaneous electrical activity in the sea anemone Calliactis parasitica. J Exp Biol 58: 77–90.Google Scholar
  112. McFarlane ID (1973) Spontaneous contractions and nerve net activity in the sea anemone Calliactis parasitica. Mar Behav Physiol 2: 97–113.Google Scholar
  113. McFarlane ID (1974) Control of the pacemaker system of the nerve net in the sea anemone Calliactis parasitica. J Exp Biol 61: 129–143.PubMedGoogle Scholar
  114. McFarlane ID (1975) Control of mouth opening and pharynx protrusion during feeding in the sea anemone Calliactis parasitica. J Exp Biol 63: 615–626.PubMedGoogle Scholar
  115. McFarlane ID (1979) Two slow conducting systems coordinate shell-climbing behaviour in the brain coral Calliactis parasitica. J Exp Biol 64: 431–446.Google Scholar
  116. McFarlane ID (1978) Multiple conducting systems and the control of behaviour in the brain coral Meandrina meandrites (L.). Proc R Soc B 200: 193–216.Google Scholar
  117. McFarlane ID (1982) Calliactis parasitica. In: Shelton GAB (ed) Electrical conduction and behaviour in ‘simple’ invertebrates. Clarendon Press, Oxford, pp 243–265.Google Scholar
  118. McFarlane ID (1983) Nerve net pacemakers and phases of behaviour in the sea anemone Calliactis parasitica. J Exp Biol. 104: 231–246.Google Scholar
  119. McFarlane ID (1984) Nerve nets and conducting systems in sea anemones: two pathways excite tentacle contractions in Calliactis parasitica. J Exp Biol 108: 137–149.Google Scholar
  120. MaFarlane ID, Lawn ID (1972) Expansion and contraction of the oral disk in the sea anemone Tealia felina. J Exp Biol 57: 633–649.Google Scholar
  121. McNair GT (1923) Motor reactions of the fresh-water sponge Ephydatia fluviatilis. Biol Bull 44: 153–166.Google Scholar
  122. Meinhardt H, Gierer A (1974) Application of a theory of biological formation based on lateral inhibition. J Cell Sci 15: 321–346.PubMedGoogle Scholar
  123. Mills CE, Mackie GO, Singla CL (1985) Giant nerve axons and escape swimming in Amphogona apicata with notes on other hydromedusae. Can J Zool 63: 2221–2224.Google Scholar
  124. Moss AG, Tamm SL (1986) Electrophysiological control of ciliary motor responses in the ctenophore Pleurobrachia. J Comp Physiol A 158: 311–330.PubMedGoogle Scholar
  125. Ohtsu K (1983) Antagonizing effects of ultraviolet and visible light on the ERG from the ocellus of Spirocodon saltatrix. J Exp Biol 105: 417–420.Google Scholar
  126. Ohtsu K, Yoshida M (1973) Electrical activities of the anthomedusan Spirocodon saltatrix (Tilisius). Biol Bull 145: 532–547.Google Scholar
  127. Pantin CFA (1935a) The nerve-net of the Actinozoa. I. Facilitation. J Exp Biol 12: 119–138.Google Scholar
  128. Pantin CFA (1935b) The nerve-net of the Actinozoa. II. Plan of the nerve net. J Exp Biol 12: 139–155.Google Scholar
  129. Pantin CFA (1935c) The nerve-net of the Actinozoa. III. Polarity and afterdischarge. J Exp Biol 12: 156–164.Google Scholar
  130. Pantin CFA (1935d) The nerve-net of the Actinozoa. IV. Facilitation and the ‘staircase’. J Exp Biol 12: 389–396.Google Scholar
  131. Pantin CFA (1952) The elementary nervous system. Proc R Soc B 140: 147–168.Google Scholar
  132. Pantin CFA, Vianna Dias M (1952) Rhythm and after discharge in medusae. Anais Acad Bras Cienc 24: 351–364.Google Scholar
  133. Passano LM (1965) Pacemakers and activity patterns in medusae: homage to Romanes. Amer Zool 5: 465–481.Google Scholar
  134. Passano LM (1973) Behavioral control systems in medusae; a comparison between hydro- and scyphomedusae. Publ Seto Mar Biol Lab 20: 615–645.Google Scholar
  135. Passano LM (1982) Scyphozoa and cubozoa. In: Shelton GAB (ed) Electrical conduction and behaviour in ‘simple’ invertebrates. Clarendon Press, Oxford, pp 149–202.Google Scholar
  136. Passano LM, Mackie GO, Pavans de Ceccatty M (1967) Physiologie du comportement de 1’Hydromeduse Sarsia tubulosa Sars. Les systèmes des activités spontanées. CR Hebd Seanc Acad Sci, Paris 264: 614–617.Google Scholar
  137. Patton ML, Passano LM (1972) Intracellular recording from the giant fiber nerve-net of a scyphozoan jellyfish. Amer Zool 12: 35.Google Scholar
  138. Pavans de Caccatty M (1955) Le système nerveux des Eponges. Ann Sci Nat Zool 17: 203–298.Google Scholar
  139. Pavans de Caccatty M (1962) Système nerveux et intégration chez les spongiaires. Ann Sci Nat Zool 4: 127–137.Google Scholar
  140. Pavans de Ceccatty M (1969) Les systèmes des activités motrices, spontanées et provoquées des Eponges. C R Hebd Seanc Acad Paris 269: 596–599.Google Scholar
  141. Pavans de Ceccatty M (1974) Coordination in sponges. The foundations of integration. Amer Zool 14: 895–903.Google Scholar
  142. Pavans de Ceccatty M, Coraboeuf E (1960) Les réactions motrices de l’éponge siliceuse Tethya lyncurium à quelques stimulations expérimentales. Vie et Milieu 11: 594–600.Google Scholar
  143. Pickens PE (1969) Rapid contractions and associated potentials in a sand-dwelling anemone. J Exp Biol 51: 513–528.PubMedGoogle Scholar
  144. Rees WJ (1966) The evolution of the Hydrozoa. In: Rees WJ (ed) The Cnidaria and their evolution. Academic Press, pp 199–222.Google Scholar
  145. Reiswig HM (1971) In situ pumping activities of tropical Demospongiae. Mar Biol 9: 38–50.Google Scholar
  146. Reiswig HM, Mackie GO (1983) Studies on hexactinellid sponges. III. The taxonomic status of Hexactinellida within the Porifera. Phil Trans R Soc Lond B 301: 419–428.Google Scholar
  147. Roberts A, Mackie GO (1980) The giant axon escape system of a hydrozoan medusa, Aglantha digitale. J Exp Biol 84: 303–318.PubMedGoogle Scholar
  148. Robson EA (1963) The nerve-net of a swimming anemone, Stomphia coccinea. Q J Micrsc Sci 104: 535–549.Google Scholar
  149. Robson EA (1965) Some aspects of the structure of the nervous system in the anemone Calliactis. Amer Zool 5: 403–410.Google Scholar
  150. Robson EA, Josephson RK (1969) Neuromuscular properties of mesenteries from the sea-anemone Metridium. J Exp Biol 50: 151–168.PubMedGoogle Scholar
  151. Romanes GJ (1876) The Croonian Lecture. Preliminary observations on the locomotor system of medusae. Phil Trans R Soc 166: 269–313.Google Scholar
  152. Romanes GJ (1878) Further observations on the locomotor system of medusae. Phil Trans R Soc 167: 659–752.Google Scholar
  153. Ross DM (1957) Quick and slow contractions in the isolated sphincter of the sea anemone, Calliactis parasitica. J Exp Biol 34: 11–28.Google Scholar
  154. Ruben P, Johnson JW, Thompson S (1986) Analysis of FMRFamide effect on Aplysia bursting neurons. J Neurosci 6: 252–259.PubMedGoogle Scholar
  155. Satterlie RA (1978) Feeding mechanisms in the ctenophore Pleurobrachia pileus. Biol Bull Mar Biol Lab, Woods Hole 155: 464.Google Scholar
  156. Satterlie RA (1979) Central control of swimming in the cubomedusan jellyfish Carybdea rastonii. J Comp Physiol 133: 357–367.Google Scholar
  157. Satterlie RA (1985) Central generation of swimming activity in the hydrozoan jellyfish Aequorea aequorea. J Neurobiol 16: 41–55.PubMedGoogle Scholar
  158. Satterlie RA, Case JF (1978) Gap junctions suggest epithelial conduction within the comb plates of the ctenophore Pleurobrachia bechei. Cell Tissue Res 193: 87–91.PubMedGoogle Scholar
  159. Satterlie RA, Case JF (1979) Neurobiology of the gorgonian coelenterates, Muricea californica and Lophogorqia chilensis. J Exp Biol 79: 191–204.Google Scholar
  160. Satterlie RA, Spencer AN, (1979) Swimming control in a cubomedusan jellyfish. Nature 281: 141–142.Google Scholar
  161. Satterlie RA, Spencer AN (1983) Neuronal control of locomotion in hydrozoan medusae: a comparative study. J Comp Physiol 150: 195–207.Google Scholar
  162. Satterlie RA, Anderson PAV, Case J (1976) Morphology and electrophysiology of the through-conducting systems in pennatulid coelenterates. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Publ Corp, New York, pp 619–627.Google Scholar
  163. Satterlie RA, Anderson PAV, Case JP (1980) Colonial coordination in anthozoans: Pennatulacea. Mar Behav Physiol 7: 25–46.Google Scholar
  164. Schaller HC (1976) Head regeneration is initiated by the release of head activator. Wilhelm Roux’s Arch Dev Biol 180: 287–295.Google Scholar
  165. Schaller HC, Gierer A (1973) Distribution of the head-activating substance in Hydra and its localization in membranous particles. J Embryol Exp Morphol 29: 39–52.PubMedGoogle Scholar
  166. Schaller HC, Schmidt T, Grimmelikhuijzen CJP (1979) Separation and specificity of action of four morphogens from Hydra. Wilhelm Roux’s Dev Biol 186: 139–149.Google Scholar
  167. Shelton GAB (1975a) Colonial behaviour and electrical activity in the Hexacorallia. Proc R Soc B 190: 139–256.Google Scholar
  168. Shelton GAB (1975b) Colonial conduction systems in the Anthozoa: Octocorallia. J Exp Biol 62: 571–578.PubMedGoogle Scholar
  169. Shelton GAB (1975c) The transmission of impulses in the ectodermal slow conduction system of the sea anemone Calliactis parasitica (Couch). J Exp Biol 62: 421–432.PubMedGoogle Scholar
  170. Shelton GAB (1980) Lophelia pertusa (L.): electrical conduction and behaviour in a deep water coral. J Mar Biol Assn UK 60: 517–528.Google Scholar
  171. Shelton GAB (1982) Anthozoa. In: Shelton GAB (ed) Electrical conduction and behaviour in ‘simple’ invertebrates. Clarendon Press, Oxford, pp 203–242.Google Scholar
  172. Shelton GAB, Holley MC (1984) The role of a ‘local electrical conduction system’ during feeding in the Devonshire cup coral Caryophyllia smithii Stokes and Broderip. Proc R Soc Lond B 220: 489–500.Google Scholar
  173. Shelton GAB, McFarlane IK (1976) Electrophysiology of two parallel conducting systems in the colonial Hexacorallia. Proc R Soc 193: 77–87.Google Scholar
  174. Sibaoka T (1966) Action potentials in plant organs. Symp Soc Exp Biol 20: 49–74.PubMedGoogle Scholar
  175. Singla CL (1978a) Fine structure of the neuromuscular system of Polyorchis penicillatus (Hydromedusae: Cnidaria). Cell Tissue Res 193: 163–174.PubMedGoogle Scholar
  176. Singla CL (1978b) Locomotion and neuromuscular system of Aglantha digitale. Cell Tissue Res 188: 317–327.PubMedGoogle Scholar
  177. Sleigh MA (1972) Features of ciliary movement of the ctenophores Beroe, Pleurobrachia and Cestus. In: Clarkand RB, Wootton RM (eds) Essays on hydrobiology. Exeter University Press, pp 119–136.Google Scholar
  178. Sleigh MA (1974) Metachronism of cilia of metazoa. In: Sleigh MA (ed) Cilia and flagella. Academic Press, New York, pp 287–304.Google Scholar
  179. Spencer AN (1971) Myoid conduction in the siphonophore Nanomia bijuga. Nature 223: 490–491.Google Scholar
  180. Spencer AN (1974) Non-nervous conduction in invertebrates and embryos. Amer Zool 14: 917–929.Google Scholar
  181. Spencer AN (1975) Behavior and electrical activity in the hydrozoan Proboscidactyla flavicirrata (Brandt). II. The medusa. Biol Bull 148: 236–250.Google Scholar
  182. Spencer AN (1978) Neurobiology of Polyorchis. I. Function of effector systems. J Neurobiol 9: 143–157.Google Scholar
  183. Spencer AN (1979) Neurobiology of Polyorchis. II. Structure of effector systems. J Neurobiol 10: 95–117.PubMedGoogle Scholar
  184. Spencer AN (1981) The parameters and properties of a group of electrically coupled neurones in the central nervous system of a hydrozoan jellyfish. J Exp Biol 93: 33–50.Google Scholar
  185. Spencer AN (1982) The physiology of a coelenterate neuromuscular synapse. J Comp Physiol 148: 353–363.Google Scholar
  186. Spencer AN, Arkett SA (1984) Radial symmetry and the organization of central neurones in a hydrozoan jellyfish. J Exp Biol 110: 69–90.Google Scholar
  187. Spencer AN, Satterlie RA (1980) Electrical and dye coupling in an identified group of neurons in a coelenterate. J Neurobiol 11: 13–19.PubMedGoogle Scholar
  188. Spencer AN, Satterlie RA (1981) The action potential and contraction in subumbrellar swimming muscle of Polyorchis penicillatus (Hydromedusae). J Comp Physiol 144: 401–407.Google Scholar
  189. Spencer AN, Schwab WE (1982) Hydrozoa. In: Shelton GAB (ed) Electrical Conduction and behaviour in ‘simple’ invertebrates. Claredon Press, Oxford, pp 73–148.Google Scholar
  190. Stein PG, Anderson PAV (1984) Maintenance of isolated smooth muscle cells of the ctenophore Mnemiopsis. J Exp Biol 110: 329–334.PubMedGoogle Scholar
  191. Tamm SL (1973) Mechanisms of ciliary coordination in ctenophores. J Exp Biol 59: 231–245.Google Scholar
  192. Tamm SL (1979) Ionic and Structural basis of ciliary reversal in ctenophores. J Cell Biol 83: 174a.Google Scholar
  193. Tamm SL (1982) Ctenophora. In: Shelton GAB (ed) Electrical conduction and behaviour in ‘simple’ invernebrates. Clarendon Press, Oxford pp 266–358.Google Scholar
  194. Tamm SL, Tamm S (1981) Ciliary reversal without rotation of axonemal structures in ctenophore comb plates. J Cell Biol 89: 495–509.PubMedGoogle Scholar
  195. Tardent P, Weber C (1976) Aqualitative and quantitative inventory of nervous cells in Hydraattenuata Pall. In: Mackie GO (ed) Coelenterate ecology andbehavior. Plenum Press, New York, pp 501–512.Google Scholar
  196. Weber C (1982) Electrical activities of a type of electroretinogram recorded from the ocellus of a jellyfish, Polyorchis penicillatus (Hydromedusae). J Exp Zool 223: 231–243.PubMedGoogle Scholar
  197. Weber C, Singla CL, Kerfoot PAH (1982) Microanatomy of the subumbrellar motor innervation in Aglantha digitale (Hydromedusae: Trachylina). Cell Tissue Res 223: 305–312.PubMedGoogle Scholar
  198. Westfall JA (1987) Ultrastructure of invertebrate synapses. (This volume).Google Scholar
  199. Wintermann G (1951) Entwicklungsphysiologische Intersuchungen an Susswasserschwammen. Zool Jahrb Abt Anat Ont Tiere 71: 427–486.Google Scholar
  200. Wolpert L (1969) Positional information and the spatial pattern of cell differentiation. J Theor Biol 25: 1–47.PubMedGoogle Scholar
  201. Wolpert L, Hombruch A, Clarke MRB (1974) Positional information and positional signalling in Hydra. Amer Zool 14: 647–663.Google Scholar
  202. Yu SM, Westfall JM, Dunne JF (1985) Light and electron microscopic localization of a monoclonal antibody in neuron in situ in the head region of Hydra. J Morphol 184: 183–193.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Richard A. Satterlie
    • 1
  • Andrew N. Spencer
    • 2
  1. 1.Department of ZoologyArizona State UniversityTempeUSA
  2. 2.Department of ZoologyUniversity of AlbertaEdmontonCanada

Personalised recommendations