Advertisement

Membrane Proteins

Structure, Arrangement, and Disposition in the Membrane
  • Guido Guidotti

Abstract

The membranes of a cell have the principal function of setting the boundaries between the cell and the environment and between compartments within the cell. These boundaries prevent the movement of all polar solutes from one compartment to another, unless such movement is required for biological activity; under these circumstances, special transport systems are required. Thus, membranes can be considered as structures which are selectively permeable. The barrier to movement of polar solutes across the membrane is provided by one of the two major components of the membrane: the lipids. The other major component of the membrane, the proteins, provides the permeability function. Membrane proteins also determine most of the other properties of a membrane: They carry the determinants of specificity which distinguish one cell from another and allow for recognition between cells; they determine the shape and architecture of the membrane; they are the receptors for information about the environment and relay that information to other parts of the cell; and they are enzymes with a precise compartmental localization.

Keywords

Human Erythrocyte Intrinsic Protein Extrinsic Protein Human Erythrocyte Membrane Intrinsic Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guidotti, G. 1972. Membrane proteins. Annu. Rev. Biochem. 41:731–752.PubMedCrossRefGoogle Scholar
  2. 2.
    Singer, S. J. 1974. The molecular organization of membranes. Annu. Rev. Biochem. 43:805–833.PubMedCrossRefGoogle Scholar
  3. 3.
    Clarke, S. 1975. The size and detergent binding of membrane proteins. J. Biol. Chem. 250:5459–5469.PubMedGoogle Scholar
  4. 4.
    Steck, T. L. 1974. The organization of proteins in the human red blood cell membrane. J. Cell Biol. 62:1–19.PubMedCrossRefGoogle Scholar
  5. 5.
    Marchesi, V. T., H. Furthmayr, and M. Tomita. 1976. The red cell membrane. Annu. Rev. Biochem. 45:667–698.PubMedCrossRefGoogle Scholar
  6. 6.
    Bretscher, M.S., and M. C. Raff. 1975. Mammalian plasma membranes. Nature (London) 258:43–49.CrossRefGoogle Scholar
  7. 7.
    Rothman, J. E., and J. Lenard. 1977. Membrane asymmetry: The nature of membrane asymmetry provides clues to the puzzle of how membranes are assembled. Science 195:743–753.PubMedCrossRefGoogle Scholar
  8. 8.
    Murthy, S. N. P., T. Lin, R. K. Kaul, H. Kohler, and L. Steck. 1981. The aldolase-binding site of the human erythrocyte membrane is at the NH2 terminus of band 3. J. Biol. Chem. 256:11203–11208.PubMedGoogle Scholar
  9. 9.
    Branton, D., C. M. Cohen, and J. Tyler. 1981. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell 24:24–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Bennett, V. 1982. The molecular basis for membrane-cytoskeleton association in human erythrocytes. J. Cell Biochem. 18:49–66.PubMedCrossRefGoogle Scholar
  11. 11.
    Goodman, S. R., J. Yu, C. F. Whitfield, E. N. Culp, and E. J. Posnak. 1982. Erythrocyte membrane skeletal protein bands 4.1a and b are sequence-related phosphoproteins. J. Biol. Chem. 257:4564–4569.PubMedGoogle Scholar
  12. 12.
    Tyler, J. M., B. N. Reinhardt, and D. Branton. 1980. Associations of erythrocyte membrane proteins: Binding of purified bands 2.1 and 4.1 to spectrin. J. Biol. Chem. 255:7034–7039.PubMedGoogle Scholar
  13. 13.
    Goodman, S. R., and K. Shiffer. 1983. The spectrin membrane skeleton of normal and abnormal human erythrocytes: A review. Am. J. Physiol. 244:C121-C141.PubMedGoogle Scholar
  14. 14.
    Lazarides, E., and W. J. Nelson. 1982. Expression of spectrin in nonerythroid cells. Cell 31:505–508.PubMedCrossRefGoogle Scholar
  15. 15.
    Nelson, W. J., and Lazarides, E. 1983. Switching of subunit composition of muscle spectrin during myogenesis in vitro. Nature (London) 304:364–368.CrossRefGoogle Scholar
  16. 16.
    Bennett, V. 1979. Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues. Nature (London) 281:597–599.CrossRefGoogle Scholar
  17. 17.
    Cohen, C. M., S. F. Foley, and C. Korsgren. 1981. A protein immunologically related to erythrocyte band 4.1 is found on stress fibers of non-erythroid cells. Nature (London) 294:648–650.CrossRefGoogle Scholar
  18. 18.
    Rothman, J. E., and H. F. Lodish. 1977. Synchronized transmembrane insertion and glycosylation of a nascent membrane protein. Nature (London) 269:775–780.CrossRefGoogle Scholar
  19. 19.
    Wilson, I. A., J. J. Skehel, and C. Wiley, 1981. Structure of the haemagglutinin membrane glycoprotein in influenza virus at 3A resolution. Nature (London) 289:366–373.CrossRefGoogle Scholar
  20. 20.
    Nathenson, S. G., H. Uehara, and M. Ewenstein. 1981. Primary structural analysis of the transplantation antigens of the murine H-2 major histocompatibility complex. Annu. Rev. Biochem. 50:1025–1052.PubMedCrossRefGoogle Scholar
  21. 21.
    Kaufman, J. F., and J. L. Strominger. 1979. Both chains of HLA- DR bind to the membrane with a penultimate hydorphobic region and the heavy chain is phosphorylated at its hydrophilic carboxy terminus. Proc. Natl. Acad. Sci. U.S.A. 76:6304–6308.PubMedCrossRefGoogle Scholar
  22. 22.
    Hauri, H. P., H. Wacker, E. E. Rickli, B. Bigler-Meier, A. Quaroni, and G. Semenza. 1982. Biosynthesis of sucrase-iso- maltase: Purification and NH2-terminal amino acid sequence of the rat sucrase-isomaltase precursor (pro-sucrase-isomaltase) from fetal intestinal transplants. J. Biol. Chem. 257:4522–4528.PubMedGoogle Scholar
  23. 23.
    Ward, C. W., T. C. Ellman, and A. A. Azad. 1982. Amino acid sequence of the Pronase-related heads of neuraminidase subtype N2 from the Asian strain A/Tokyo/3/67 of influenza virus. Biochem. J. 207:91–95.PubMedGoogle Scholar
  24. 24.
    Enook, H. G., A. Catola, and P. Strittmatter. 1976. Mechanism of rat liver microsomal stearyl-C desaturase. J. Biol. Chem. 251: 5095–5103.Google Scholar
  25. 25.
    Takagaki, Y., R. Radhakrishnan, K. W. A. Wirtz, and H. G. Khorana. 1983. The membrane-embedded segment of cytochrome b5 as studied by cross-linking with photoactivatable phospholipids. J. Biol. Chem. 258:9136–9142.PubMedGoogle Scholar
  26. 26.
    Cantley, L. C. 1981. Structure and mechanism of the (Na, K)- ATPase. Curr. Top. Bioenerg. 11:201–237.Google Scholar
  27. 27.
    Ikemoto, N. 1982. Structure and function of the calcium pump protein of sarcoplasmic reticulum. Annu. Rev. Physiol. 44:297–317.PubMedCrossRefGoogle Scholar
  28. 28.
    Guidotti, G. 1980. The structure of the band 3 polypeptide. Alfred Benzoymp. 14:300–311.Google Scholar
  29. 29.
    Knauf, P. A. 1979. Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure. Curr. Top. Memhr. Transp. 12:249–363.Google Scholar
  30. 30.
    Dratz, E. A., and P. A. Hargrave. 1983. The structure of rhodopsin and the rod outer segment disk membrane. Trends Biochem. Sci. 8:128–131.CrossRefGoogle Scholar
  31. 31.
    Stoeckenius, W., and A. Bogomolni. 1982. Bacteriorhodopsin. Annu. Rev. Biochem. 52:587–616.CrossRefGoogle Scholar
  32. 32.
    Conti-Tronconi, B. M., and M. A. Raftery. 1982. The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties. Annu. Rev. Biochem. 51:491–530.PubMedCrossRefGoogle Scholar
  33. 33.
    Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyyotani, Y. Furutani, T. Hirose, H. Takashimo, S. Inayama, T. Miyata, and S. Numa. 1983. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302:528–532.PubMedCrossRefGoogle Scholar
  34. 34.
    Devillers-Thiery, A., J. Giraudat, M. Bentaboulet, and J. P. Changeux. 1983. Complete NA coding sequence of the acetylcholine binding a-subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. U.S.A. 80:2067–2071.PubMedCrossRefGoogle Scholar
  35. 35.
    Kyte, J. 1975. Structural studies of sodium and potassium ion activated adenosine triphosphatase. J. Biol. Chem. 250:7443–7449.PubMedGoogle Scholar
  36. 36.
    Bretscher, M. S. 1971. A major protein which spans the human erythrocyte membrane. J. Mol. Biol. 59:351–357.PubMedCrossRefGoogle Scholar
  37. 37.
    Guidotti, G. 1979. Coupling of ion transport to enzyme activity. In: The Neurosciences: Fourth Study Program. F. O. Schmitt and F. G. Worden, eds. MIT Press, Cambridge, Mass. pp. 831–840.Google Scholar
  38. 38.
    Monod, J., J. Wyman, and J. P. Changeux. 1965. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12:88–118.PubMedCrossRefGoogle Scholar
  39. 39.
    Palade, G. E. 1975. Intracellular aspects of the process of protein synthesis. Science 189:347–358.PubMedCrossRefGoogle Scholar
  40. 40.
    Bretscher, M. S. 1973. Membrane structure: Some general principles. Science 181:622–629.PubMedCrossRefGoogle Scholar
  41. 41.
    Kresheck, G. G., and I. M. Klotz. 1969. The thermodynamics of transfer of amides from an apolar to an aqueous solution. Biochemistry 8:8–12.CrossRefGoogle Scholar
  42. 42.
    Henderson, R., and P. N. T. Unwin. 1975. Three dimensional model of purple membrane obtained by electron microscopy. Nature (London) 257:28–32.CrossRefGoogle Scholar
  43. 43.
    Machlan, A. D., and M. Stewart. 1975. Tropomyosin coiled- coil interactions: Evidence for an unstaggered structure. J. Mol. Biol. 98:293–304.CrossRefGoogle Scholar
  44. 44.
    Clothia, C. 1976. The nature of accessible and buried surfaces in proteins. J. Mol. Biol. 105:1–14.CrossRefGoogle Scholar
  45. 45.
    Kreil, G. 1981. Transfer of proteins across membranes. Annu. Rev. Biochem. 50:317–348.PubMedCrossRefGoogle Scholar
  46. 46.
    Ploegh, H. L., L. F. Cannon, and J. L. Strominger. 1979. Cell-free translation of the NA for the heavy and light chains of HLA-A and HLA-B antigens. Proc. Natl. Acad. Sci. U.S.A. 76:2273–2277.PubMedCrossRefGoogle Scholar
  47. 47.
    Porter, A. G., C. Barber, N. H. Carey, R. A. Hallewell, G. Threlfall, and J. S. Emtage. 1979. Complete nucleotide sequence of influenza virus haemagglutinin gene from cloned DNA. Nature (London) 282:471–477.CrossRefGoogle Scholar
  48. 48.
    Walter, P., and G. Blobel. 1982. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature (London) 299:691–698.CrossRefGoogle Scholar
  49. 49.
    Meyer, D. I., E. Krause, and B. Dobberstein. 1982. Secretory protein translocation across membranes: The role of the docking protein. Nature (London) 297:647–650.CrossRefGoogle Scholar
  50. 50.
    Chin, G., and M. Forgac. 1983. Topological localization of proteolytic sites of sodium and potassium ion stimulated ade- nosinetriphosphatase. Biochemistry 22:3405–3410.PubMedCrossRefGoogle Scholar
  51. 51.
    Reithmeier, R. A. F., and D. H. Maennan. 1981. The NH2- terminus of the (Ca + + + Mg + +)-adenosine triphosphatase is located on the cytoplasmic surface of the sacroplasmic reticulum membrane. J. Biol. Chem. 256:5957–5960.PubMedGoogle Scholar
  52. 52.
    Reithmeier, R. A. F., S. deon, and D. H. Maennan. 1980. Assembly of the sarcoplasmic reticulum: Cell-free synthesis of the Ca + + + Mg+ + -adenosine triphosphatase and calsequestrin. J. Biol. Chem. 255:11839–11846.PubMedGoogle Scholar
  53. 53.
    Chyn, T. L., A. N. Martonosi, T. Morimoto, and D. D. Sabatini. 1970. In vitro synthesis of the CA++ transport ATPase by ribosomes bound to sarcoplasmic reticulum membranes. Proc. Natl. Acad. Sci. U.S.A. 76:1241–1245.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Guido Guidotti
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyHarvard UniversityCambridgeUSA

Personalised recommendations