Modification of Membrane Function by Drugs

  • Howard C. Rosenberg
  • Ted H. Chiu
  • James W. PutneyJr.
  • Amir Askari


The importance of the surface membrane of cells as the primary site of action of many drugs has been obvious since the earliest appreciation of membranes as regulatory barriers. As soon as the permeability characteristics of cells became apparent, investigators reasoned that polar and highly water-soluble agents were unlikely to gain access to the inner plasma of cells. The rapid action of many of these compounds similarly argued for the cell surface as a probable site of action. Ingenious quantitative analyses by A. J. Claris(1) showed that most drugs are maximally effective when occupying only a small fraction of the total surface area available. Thus, the concept of specific recognition sites or receptors in (or on) the membrane was introduced. With very little modification, this concept remains today as a cornerstone principle of the basic mechanisms of drug action. Even agents that do not act through “classical” receptor mechanisms (e.g., the anesthetics discussed herein) produce their pharmacological actions by modifying membrane function. It is becoming increasingly apparent that the actions of most (if not all) pharmacological agents involve modification of membrane functions either directly or indirectly. Thus, the actions of drugs on membrane functions can be considered a fundamental aspect of drug action important in virtually all areas of pharmacology.


Local Anesthetic Adenylate Cyclase Phosphatidic Acid Gaba Receptor Cardiac Glycoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark, A. J. 1937. Handbook of Experimental Pharmacology, Volume IV. Springer-Verlag, Berlin.Google Scholar
  2. 2.
    Skou, J. C. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves.Biochim. Biophys. Acta 23: 394–401.PubMedCrossRefGoogle Scholar
  3. 3.
    Glynn, I. M., and S. J. D. Karlish. 1975. The sodium pump. Annu. Rev. Physiol. 37:13–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwartz, A., G. E. Lindenmayer, and J. C. Allen. 1975. The sodium-potassium adenosine triphosphatase: Pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 27:3–134.PubMedGoogle Scholar
  5. 5.
    Askari, A., ed. 1974. Properties and Functions of (Na+ +K+)- Activated Adenosine Triphosphatase. Ann. N.Y. Acad. Sci. 241.Google Scholar
  6. 6.
    Skou, J. C., and J. G. Norby, eds. 1979. Na,K-ATPase: Structure and Kinetics. Academic Press, New York.Google Scholar
  7. 7.
    Bronner, F., and A. Kleinzeller, eds. 1983. Curr. Top. Membr. Transp. 19.Google Scholar
  8. 8.
    Phillis, J. W., and P. H. Wu. 1981. Catecholamines and the sodium pump in excitable cells.Prog. Neurobiol. 17:141–184.PubMedCrossRefGoogle Scholar
  9. 9.
    Schatzmann, H. J. 1953. Herzglycoside als Hemmstoffe fur den aktiven Kalium und Nutrium Transport diirch die erythrocyten- membran. Helv. Physiol. Pharmacol. Acta 11:346–354.PubMedGoogle Scholar
  10. 10.
    Skou, J. C. 1960. Further investigations on a Mg+ + +Na+ activated adenosine triphosphatase possibly related to the active linked transport of Na+ and K+ across the nerve membrane. Biochim. Biophys. Acta 42:6–23.CrossRefGoogle Scholar
  11. 11.
    Robinson, J. D., and M. S. Flashner, 1979. The (Na++K +)- activated ATPase: Enzymatic and transport properties. Biochim. Biophys. Acta 549:145–176.PubMedGoogle Scholar
  12. 12.
    Cantley, L. C. 1981. Structure and mechanism of the (Na, K)- ATPase.Curr. Top. Bioenerg. 11:201–237.Google Scholar
  13. 13.
    Askari, A. 1982. Na+, K + -ATPase: Relation of conformational transitions to function. Mol. Cell. Biochem. 43:129–143.PubMedCrossRefGoogle Scholar
  14. 14.
    Huang, W., and A. Askari, 1980. Ouabain-induced changes in the tertiary and the quaternary conformations of (Na+ +K+-activated adenosine triphosphatase. Mol. Pharmacol. 18:53–56.PubMedGoogle Scholar
  15. 15.
    Cattell, M., and H. Gold. 1938. Influence of digitalis glycosides on the force of contraction of mammalian cardiac muscle. J. Pharmacol. Exp. Ther. 62:116–125.Google Scholar
  16. 16.
    Cattell, M., and M. Goodell. 1937. On the mechanism of action of digitalis glycosides on muscle. Science 86:106–107.PubMedCrossRefGoogle Scholar
  17. 17.
    Repke, K. R. H. 1964. The biochemical action of digitalis. Klin. Wochenschr. 42:157–165.PubMedCrossRefGoogle Scholar
  18. 18.
    Okita, G. T. 1977. Dissociation of Na +, K + -ATPase inhibition from digitalis inotropy. Fed. Proc. 36:2225–2230.PubMedGoogle Scholar
  19. 19.
    Huang, W., H. M. Rhee, T. H. Chiu, and A. Askari. 1979. Re- evaluation of the relationship between the positive inotropic effect of ouabain and its inhibitory effect on (Na++K +)-dependent adenosine triphosphatase in rabbit and dog hearts. J. Pharmacol. Exp. Ther. 211:571–582.PubMedGoogle Scholar
  20. 20.
    Noble, D. 1980. Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovas. Res. 14:495–514.CrossRefGoogle Scholar
  21. 21.
    Erdmann, E., G. Philipp, and H. Scholz. 1980. Cardiac glycoside receptor, (Na+ +K +)- ATPase activity and force of contraction in rat heart. Biochem. Pharmacol. 29:3219–3229.PubMedCrossRefGoogle Scholar
  22. 22.
    Brodsky, W.-A., ed. 1980. Anion and Proton Transport. Ann. N.Y. Acad. Sci. 341.Google Scholar
  23. 23.
    Stein, W. D. 1967. The Movements of Molecules Across Cell Membranes. Academic Press, New York.Google Scholar
  24. 24.
    Tosteson, D. C. 1981. Cation countertransport and cotransport in human red cells. Fed. Proc. 40:1429–1433.PubMedGoogle Scholar
  25. 25.
    Beyer, K. H., H. F. Russo, E. K. Tillson, A. K. Miller, V. F. Verwey, and S. R. Gass. 1951. “Benemid”, p-(di-n-pro- pylsulfamyl)-benzoic acid: Its renal affinity and its elimination. Am. J. Physiol. 166:625–640.PubMedGoogle Scholar
  26. 26.
    Sullivan, L. P., and J. J. Grantham. 1982. Physiology of the Kidney, 2nd ed. Lea & Febiger, Philadelphia.Google Scholar
  27. 27.
    Frohlich, A., and O. Loewi. 1910. Uber eine steigerang der adren- alinempfindlichkeit diirch cocain. Arch. Exp. Pathol. Pharmakol. 62:159–169.CrossRefGoogle Scholar
  28. 28.
    Maxwell, R. A., R. M. Ferris, and J. E. Burcsu. 1976. Structural requirements for inhibition of noradrenaline uptake by phe- nethylamine derivatives, desipramine, cocaine, and other compounds. In: The Mechanism of Neuronal and Extraneuronal Transport of Catecholamines. D. M. Paton, ed. Raven Press, New York. pp. 95–153.Google Scholar
  29. 29.
    Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117:500–544.Google Scholar
  30. 30.
    Narahashi, T. 1972. Mechanism of action of tetrodotoxin and saxitoxin on excitable membranes. Fed. Proc. 31:1124–1132.PubMedGoogle Scholar
  31. 31.
    Hille, B. 1970. Ionic channels in nerve membrane. Prog. Biophys. Mol. Biol. 21:1–32.PubMedCrossRefGoogle Scholar
  32. 32.
    Catterall, W. A. 1980. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu. Rev. Pharmacol. Toxicol. 20:15–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Cuervo, L. N., and W. J. Adelman, Jr. 1970. Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon. J. Gen. Physiol. 55: 309–335.PubMedCrossRefGoogle Scholar
  34. 34.
    Ritchie, J. M., and R. B. Rogart. 1977. The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev. Physiol. Biochem. Pharmacol. 79:1–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Barnard, E. A., J. Wieckowski, and T. H. Chiu. 1971. Cholinergic receptor molecules and cholinesterase molecules at skeletal muscle junctions. Nature (London) 234:207–209.CrossRefGoogle Scholar
  36. 36.
    Seeman, P. 1972. The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev. 24:583–655.PubMedGoogle Scholar
  37. 37.
    Staiman, A., and P. Seeman. 1977. Conduction-blocking concentrations of anesthetics increase with nerve axon diameter: Studies with alcohol, lidocaine and tetrodotoxin on single myelinated fibers. J. Pharmacol. Exp. Ther. 201:340–349.PubMedGoogle Scholar
  38. 38.
    Roth, S. H. 1979. Physical mechanisms of anesthesia. Annu. Rev. Pharmacol. Toxicol. 19:159–178.PubMedCrossRefGoogle Scholar
  39. 39.
    Strichartz, G. 1976. Molecular mechanisms of nerve block by local anesthetics. Anesthesiology 45:421–441.PubMedCrossRefGoogle Scholar
  40. 40.
    Seeman, P. 1974. The membrane expansion theory of anesthesia: Direct evidence using ethanol and a high precision density meter. Experientia 30:759–760.PubMedCrossRefGoogle Scholar
  41. 41.
    Frazier, D. T., T. Narahashi, and M. Yamada. 1970. The site of action and active form of local anesthetics. II. Experiments with quaternary compounds. J. Pharmacol. Exp. Ther. 171:45–51.PubMedGoogle Scholar
  42. 42.
    Triggle, D. J., andC. R. Triggle. 1976. Chemical Pharmacology of the Synapse. Academic Press, New York.Google Scholar
  43. 43.
    Bloom, F. E. 1980. Drugs acting on the central nervous system. In: The Pharmacological Basis of Therapeutics. A. G. Gilman, L. S. Goodman, and A. Gilman, eds. Macmillan Co., New York. pp. 235–257.Google Scholar
  44. 44.
    Katz, B. 1966. Nerve, Muscle, and Synapse. McGraw-Hill, New York.Google Scholar
  45. 45.
    Changeux, J.-P. 1981. The acetylcholine receptor: An “al- losteric” membrane protein. Harvey Lect. 75:85–254.Google Scholar
  46. 46.
    Conti-Tronconi, B. M., and M. A. Raftery. 1982. The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties. Annu. Rev. Biochem. 51:491–530.PubMedCrossRefGoogle Scholar
  47. 47.
    Katz, B., and R. Miledi. 1972. The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. (London) 224:665–700.Google Scholar
  48. 48.
    Neher, E., and B. Sakmann. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature (London) 260:799–802.CrossRefGoogle Scholar
  49. 49.
    Katz, B., and R. Miledi. 1971. Further observations of acetylcholine noise. Nature New Biol. 232:124–126.PubMedCrossRefGoogle Scholar
  50. 50.
    Katz, B., and R. Miledi. 1973. The effect of a-bungarotoxin on acetylcholine receptors. Br. J. Pharmacol. 49:138–139.PubMedGoogle Scholar
  51. 51.
    Katz, B., and R. Miledi. 1973. The characteristics of “end-plate noise” produced by different depolarizing drugs. J. Physiol. (London) 230:707–717.Google Scholar
  52. 52.
    Takeuchi, A., and N. Takeuchi. 1960. On the permeability of end- plate membrane during the action of transmitter. J. Physiol. (London) 154:52–67.Google Scholar
  53. 53.
    Weidmann, S. 1974. Heart: Electrophysiology. Annu. Rev. Physiol. 36:155–169.PubMedCrossRefGoogle Scholar
  54. 54.
    Wit, A. L., and B. F. Hoffman. 1976. Modification of the cardiac action potential by pharmacologic agents. In: Cellular Pharmacology of Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, 111. pp. 408–484.Google Scholar
  55. 55.
    Bolton, T. B. 1979. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59:606–718.PubMedGoogle Scholar
  56. 56.
    Minneman, K. P., R. N. Pittman, and P. B. Molinoff. 1981. Beta- adrenergic receptor subtypes: Properties, distribution, and regulation. Annu. Rev. Neurosci. 4:419–461.PubMedCrossRefGoogle Scholar
  57. 57.
    Biilbring, E., A. F. Brading, A. W. Jones, and T. Tomita. 1981. Smooth Muscle. University of Texas Press, Austin.Google Scholar
  58. 58.
    Biilbring, E., H. Ohashi, and T. Tomita. 1981. Adrenergic mechanisms. In: Smooth Muscle. E. Biilbring, A. F. Brading, A. W. Jones, and T. Tomita, eds. University of Texas Press, Austin, pp. 219–248.Google Scholar
  59. 59.
    Robison, G. A., R. W. Butcher, and E. W. Sutherland. 1971. Cyclic AMP. Academic Press, New York.Google Scholar
  60. 60.
    Hardman, J. G. 1981. Cyclic nucleotides and smooth muscle contraction: Some conceptual and experimental considerations. In: Smooth Muscle. E. Biilbring, A. F. Brading, A. W. Jones, andT. Tomita, eds. University of Texas Press, Austin, pp. 249–262.Google Scholar
  61. 61.
    Reuter, H. 1974. Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J. Physiol. (London) 242:429–451.Google Scholar
  62. 62.
    Tsien, R. W. 1977. Cyclic AMP and contractile activity in heart. Adv. Cyclic Nucleotide Res. 8:364–420.Google Scholar
  63. 63.
    McGeer, P. L., J. C. Eccles, andE. G. McGeer. 1978. Molecular Neurobiology of the Mammalian Brain. Plenum Press, New York.Google Scholar
  64. 64.
    Baxter, C. F. 1976. Some recent advances in studies of GAB A metabolism and compartmentation. In: GAB A in Nervous System Function. E. Roberts, T. N. Chase, and D. B. Tower, eds. Raven Press, New York. pp. 61–87.Google Scholar
  65. 65.
    Curtis, D. R. 1979. Gabergic transmission in the mammalian central nervous system. In: GABA-Neurotransmitters. P. Krogs-gaard-Larsen, J. Scheel-Kruger, and H. Kofod, eds. Academic Press, New York. pp. 17–27.Google Scholar
  66. 66.
    Davidson, N. 1976. Neurotransmitter Amino Acids. Academic Press, New York.Google Scholar
  67. 67.
    Tower, D. B. 1977. Neurochemistry—One hundred years, 1875- 1975. Ann. Neurol. 1:2–36.PubMedCrossRefGoogle Scholar
  68. 68.
    Johnston, G. A. R. 1978. Neuropharmacology of amino acid inhibitory transmitters. Annu. Rev. Pharmacol. Toxicol. 18:269–289.PubMedCrossRefGoogle Scholar
  69. 69.
    Olsen, R. W. 1982. Drug interactions at the GABA receptor- ionophore complex. Annu. Rev. Pharmacol. Toxicol. 22:245–277.PubMedCrossRefGoogle Scholar
  70. 70.
    Mohler, H., and T. Okada. 1977. GABA receptor binding with 3H(+) bicuculline-methiodide in rat CNS. Nature (London) 267: 65–67.CrossRefGoogle Scholar
  71. 71.
    Krogsgaard-Larsen, P., G. A. R. Johnston, D. R. Curtis, C. J. A. Game, and R. M. McCulloch. 1975. Structure and biological activity of a series of conformationally restricted analogues of GABA. J. Neurochem. 25:803–809.PubMedCrossRefGoogle Scholar
  72. 72.
    Haefely, W. E. 1977. Synaptic pharmacology of barbiturates and benzodiazepines. Agents Actions 7:353–359.PubMedCrossRefGoogle Scholar
  73. 73.
    Iadarola, M. J., and K. Gale. 1979. Dissociation between drug- induced increases in nerve terminal and non-nerve terminal pools of GABA in vivo. Eur. J. Pharmacol. 59:125–129.PubMedCrossRefGoogle Scholar
  74. 74.
    Iadarola, M. J., A. Raines, and K. Gale. 1979. Differential effects of n-dipropylacetate and amino-oxyacetic acid on y-aminobutyric acid levels in discrete areas of rat brain. J. Neurochem. 33:1119- 1123.PubMedCrossRefGoogle Scholar
  75. 75.
    Goldberg, N. D., and M. K. Haddox. 1977. Cyclic GMP metabolism and involvement in biological regulation. Annu. Rev. Biochem. 46:823–896.PubMedCrossRefGoogle Scholar
  76. 76.
    Murad, F., W. P. Arnold, C. K. Mittal, and J. M. Braughler. 1979. Properties and regulation of guanylate cyclase and some proposed functions for cyclic GMP. Adv. Cyclic Nucleotide Res. 11:175–204.PubMedGoogle Scholar
  77. 77.
    Rasmussen, H. 1981. Calcium and cAMP as Synarchic Messengers. Wiley, New York.Google Scholar
  78. 78.
    Perkins, J. P. 1973. Adenyl cyclase. Adv. Cyclic Nucleotide Res. 3:1–64.PubMedGoogle Scholar
  79. 79.
    Schramm, M., J. Orly, S. Eimerl, andM. Korner. 1977. Coupling of hormone receptors to adenylate cyclase of different cells by cell fusion. Nature (London) 268:310–313.CrossRefGoogle Scholar
  80. 80.
    Rodbell, M. 1980. The role of hormone receptors and GTP-reg- ulatory proteins in membrane transduction. Nature (London) 284: 17–22.CrossRefGoogle Scholar
  81. 81.
    Limbird, L. E. 1981. Activation and attenuation of adenylate cyclase: The role of GTP-binding proteins as macromolecular messengers in receptor-cyclase coupling. Biochem. J. 195:1–13.PubMedGoogle Scholar
  82. 82.
    Selinger, Z., and D. Cassel. 1981. Role of guanine nucleotides in hormonal activation of adenylate cyclase. Adv. Cyclic Nucleotide Res. 14:15–22.PubMedGoogle Scholar
  83. 83.
    Jakobs, K. H. 1979. Inhibition of adenylate cyclase by hormones and neurotransmitters. Mol. Cell. Endrocrinol. 16:147–156.CrossRefGoogle Scholar
  84. 84.
    Ross, E. M., and A. G. Gilman. 1980. Biochemical properties of hormone-sensitive adenylate cyclase. Annu. Rev. Biochem. 49: 533–564.PubMedCrossRefGoogle Scholar
  85. 85.
    Cuatrecasas, P. 1975. Hormone receptors—Their function in cell membranes and some problems related to methodology. Adv. Cyclic Nucleotide Res. 5:79–103.PubMedGoogle Scholar
  86. 86.
    Moss, J., and M. Vaughan. 1979. Activation of adenylate cyclase by choleragen. Annu. Rev. Biochem. 48:581–600.PubMedCrossRefGoogle Scholar
  87. 87.
    Seamon, K. B., and J. W. Daly. 1981. Forskolin: A unique diter- pene activator of cyclic AMP-generating systems. J. Cyclic Nucleotide Res. 7:201–224.PubMedGoogle Scholar
  88. 88.
    Darfler, F. J., L. C. Mahan, A. M. Koachman, and P. A. Insel. 1982. Stimulation by forskolin of intact S49 lymphoma cells involves the nucleotide regulatory protein of adenylate cyclase. J. Biol. Chem. 257:11901–11907.PubMedGoogle Scholar
  89. 89.
    Ringer, S. 1883. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. (London) 4:29–42.Google Scholar
  90. 90.
    Rubin, R. P. 1982. Calcium and Cellular Secretion. Plenum Press, New York.Google Scholar
  91. 91.
    Bianchi, C. P. 1968. Cell Calcium. Butterworths, London.Google Scholar
  92. 92.
    Blinks, J. R. 1978. Applications of calcium-sensitive photopro- teins in experimental biology. Photochem. Photobiol. 27:423–432.PubMedCrossRefGoogle Scholar
  93. 93.
    Borle, A. B., and K. W. Snowdowne. 1982. Measurement of intracellular free calcium in monkey kidney cells with aequorin. Science 217:252–254.PubMedCrossRefGoogle Scholar
  94. 94.
    Murphy, E., K. Coll, T. L. Rich, and J. R. Williamson. 1980. Hormonal effects on calcium homeostasis in isolated hepatocytes. J. Biol. Chem. 255:6600–6608.PubMedGoogle Scholar
  95. 95.
    O’Doherty, J., S. J. Youmans, W. M. Armstrong, andR. J. Stark. 1980. Calcium regulation during stimulus-secretion coupling: Continuous measurement of intracellular calcium activities. Science 209:510–513.PubMedCrossRefGoogle Scholar
  96. 95a.
    Tsien, R. Y., T. Pozzan, and T. J. Rink. 1982. Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell Biol. 94:325–334.PubMedCrossRefGoogle Scholar
  97. 96.
    Baker, P. F. 1972. Transport and metabolism of calcium ions in nerve. Prog. Biophys. Mol. Biol. 24:177–233.PubMedCrossRefGoogle Scholar
  98. 97.
    Atwater, I., E. Rojas, and J. Vergara. 1974. Calcium influxes and tension development in perfused single barnacle muscle fibers under membrane potential control. J. Physiol. (London) 243:523–552.Google Scholar
  99. 98.
    Putney, J. W., Jr. 1978. Stimulus-permeability coupling: Role of calcium in the receptor regulation of membrane permeability. Pharmacol. Rev. 30:209–245.PubMedGoogle Scholar
  100. 99.
    Petersen, O. H. 1980. The neurophysiology of Gland Cells. Academic Press, New York.Google Scholar
  101. 100.
    Exton, J. H. 1981. Mechanisms involved in a-adrenergic effects of catecholamines. In: Adrenoceptors and Catecholamine Action, Part A. G. Kunox, ed. Wiley-Interscience, New York. pp. 117–129.Google Scholar
  102. 101.
    Putney, J. W., Jr., J. Poggioli, and S. J. Weiss. 1981. Receptor regulation of calcium release and calcium permeability in parotid gland cells. Philos. Trans. R. Soc. London Ser. B 296:37–45.CrossRefGoogle Scholar
  103. 102.
    Hokin, M. R., and L. E. Hopkin. 1953. Enzyme secretion and the incorporation of P32 into phospholipids of pancreas slices. J. Biol. Chem. 203:967–977.PubMedGoogle Scholar
  104. 103.
    Michell, R. H. 1975. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415:81–147.PubMedGoogle Scholar
  105. 104.
    Salmon, D. M., and T. W. Honeyman. 1980. Proposed mechanism of cholinergic action in smooth muscle. Nature (London) 284:344–345.CrossRefGoogle Scholar
  106. 105.
    Putney, J. W., Jr., S. J. Weiss, C. M. VanDeWalle, and R. A. Haddas. 1980. Is phosphatidic acid a calcium ionophore under neurohumoral control? Nature (London) 284:345–347.CrossRefGoogle Scholar
  107. 106.
    Putney, J. W., Jr. 1981. Recent hypotheses regarding the phos- phatidylinositol effect. Life Sci. 29:1183–1194.PubMedCrossRefGoogle Scholar
  108. 106a.
    Berridge, M. J. and R. F. Irvine. 1984. Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature (London) 312:315–321.CrossRefGoogle Scholar
  109. 107.
    Cockroft, S. 1981. Does phosphatidylinositol breakdown control the Ca2 +-gating mechanism? Trends Pharmacol. Sci. 2:340–342.CrossRefGoogle Scholar
  110. 108.
    Hawthorne, J. N. 1982. Is phosphatidylinositol now out of the calcium gate? Nature (London) 295:281–282.CrossRefGoogle Scholar
  111. 109.
    Michell, R. H. 1982. The unknown meaning of receptor-stimulated inositol lipid metabolism. Trends Pharmacol. Sci. 3:140–141.CrossRefGoogle Scholar
  112. 110.
    Michell, R. H. 1982. Is phosphatidylinositol really out of the calcium gate? Nature (London) 298:492–493.CrossRefGoogle Scholar
  113. 111.
    Caldwell, P. C. 1970. Calcium chelation and buffers. In: Calcium and Cellular Function. A. W. Cuthbert, ed. St. Martins Press, New York. pp. 10–16.Google Scholar
  114. 112.
    Rojas, E., R. E. Taylor, I. Atwater, and F. Bezanilla. 1969. Analysis of the effect of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium. J. Gen. Physiol. 54:532–552.PubMedCrossRefGoogle Scholar
  115. 113.
    Bianchi, C. P. 1975. Cellular pharmacology of contraction of skeletal muscle. In: Cellular Pharmacology of Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, 111. pp. 485–519.Google Scholar
  116. 114.
    Feinstein, M. B. 1966. Inhibition of contraction and calcium exchangeability in rat uterus by local anesthetics. J. Pharmacol. Exp. Ther. 152:516–524.PubMedGoogle Scholar
  117. 115.
    Somlyo, A. P. 1975. Vascular smooth muscle. In: Cellular Pharmacology of Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, 111. pp. 360–407.Google Scholar
  118. 116.
    Weiss, G. B. 1970. On the site of action of lanthanum in frog sartorius muscle. J. Pharmacol. Exp. Ther. 174:517–526.PubMedGoogle Scholar
  119. 117.
    Weiss, G. B. 1974. Cellular pharmacology of lanthanum. Annu. Rev. Pharmacol. 14:343–354.CrossRefGoogle Scholar
  120. 118.
    Miledi, R. 1971. Lanthanum ions abolish the “calcium response” of nerve terminals. Nature (London) 229:410–411.CrossRefGoogle Scholar
  121. 119.
    Borowicz, J. L. 1972. Effect of lanthanum on catecholamine release from adrenal medulla. Life Sci. 11:959–964.CrossRefGoogle Scholar
  122. 120.
    Leslie, B. A., J. W. Putney, Jr., and J. M. Sherman. 1976. α- Adrenergic, β-adrenergic and cholinergic mechanisms for amylase secretion by rat parotid gland in vitro. J. Physiol. (London) 260:351–370.Google Scholar
  123. 121.
    Putney, J. W., Jr. 1976. Biphasic modulation of potassium release in rat parotid gland by carbachol and phenylephrine. J. Pharmacol. Exp. Ther. 198:375–384.PubMedGoogle Scholar
  124. 122.
    Fleckenstein, A. 1977. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu. Rev. Pharmacol. Toxicol. 17:149–166.PubMedCrossRefGoogle Scholar
  125. 123.
    Triggle, D. J. 1981. Calcium antagonists: Basic chemical and pharmacological aspects. In: New Perspectives on Calcium Antagonists. G. B. Weiss, ed. American Physiological Society, Washington, D.C. pp. 1–18.Google Scholar
  126. 124.
    Glossman, H., D. R. Ferry, F. Lübbecke, R. Mewes, and F. Hofmann. 1982. Calcium channels: Direct identification with radioligand binding studies. Trends Pharmacol. Sci. 3:431–437.CrossRefGoogle Scholar
  127. 125.
    Corrado, A. P., W. A. Prado, and I. P. deMorais. 1975. Competitive antagonism between calcium and aminoglycoside antibiotics in skeletal and smooth muscles. In: Concepts of Membranes in Regulation and Excitation. M. Rocha e Silva and G. Suarez- Kurtz, eds. Raven Press, New York. pp. 201–215.Google Scholar
  128. 126.
    Goodman, F. R., G. B. Weiss, and H. R. Adams. 1974. Alterations by neomycin of 45Ca movements and contractile responses in vascular smooth muscle. J. Pharmacol. Exp. Ther. 188:472–480.PubMedGoogle Scholar
  129. 127.
    Pressman, B. C. 1976. Biological applications of ionophores. Annu. Rev. Biochem. 45:501–530.PubMedCrossRefGoogle Scholar
  130. 128.
    Chandler, D. E., and J. A. Williams. 1977. Intracellular uptake and ±-amylase and lactate dehydrogenase releasing actions of the divalent cation ionophore A23187 in dissociated pancreatic acinar cells. J. Membr. Biol. 32:201–230.PubMedCrossRefGoogle Scholar
  131. 129.
    Liu, C.-M., and T. E. Herman. 1978. Characterization of. ionomycin as a calcium ionophore.J. Biol. Chem. 253:5892PubMedGoogle Scholar
  132. 130.
    Poggioli, J., B. A. Leslie, J. S. McKinney, S. J. Weiss, and J. W. Putney, Jr. 1982. Actions of ionomycin in rat parotid gland. J. Pharmacol. Exp. Ther. 221:247–253.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Howard C. Rosenberg
    • 2
  • Ted H. Chiu
    • 2
  • James W. PutneyJr.
    • 1
  • Amir Askari
    • 2
  1. 1.Department of Pharmacology and TherapeuticsMedical College of OhioToledoUSA
  2. 2.Department of PharmacologyMedical College of VirginiaRichmondUSA

Personalised recommendations