Skip to main content

Modification of Membrane Function by Drugs

  • Chapter
Membrane Physiology

Abstract

The importance of the surface membrane of cells as the primary site of action of many drugs has been obvious since the earliest appreciation of membranes as regulatory barriers. As soon as the permeability characteristics of cells became apparent, investigators reasoned that polar and highly water-soluble agents were unlikely to gain access to the inner plasma of cells. The rapid action of many of these compounds similarly argued for the cell surface as a probable site of action. Ingenious quantitative analyses by A. J. Claris(1) showed that most drugs are maximally effective when occupying only a small fraction of the total surface area available. Thus, the concept of specific recognition sites or receptors in (or on) the membrane was introduced. With very little modification, this concept remains today as a cornerstone principle of the basic mechanisms of drug action. Even agents that do not act through “classical” receptor mechanisms (e.g., the anesthetics discussed herein) produce their pharmacological actions by modifying membrane function. It is becoming increasingly apparent that the actions of most (if not all) pharmacological agents involve modification of membrane functions either directly or indirectly. Thus, the actions of drugs on membrane functions can be considered a fundamental aspect of drug action important in virtually all areas of pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark, A. J. 1937. Handbook of Experimental Pharmacology, Volume IV. Springer-Verlag, Berlin.

    Google Scholar 

  2. Skou, J. C. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves.Biochim. Biophys. Acta 23: 394–401.

    Article  PubMed  CAS  Google Scholar 

  3. Glynn, I. M., and S. J. D. Karlish. 1975. The sodium pump. Annu. Rev. Physiol. 37:13–55.

    Article  PubMed  CAS  Google Scholar 

  4. Schwartz, A., G. E. Lindenmayer, and J. C. Allen. 1975. The sodium-potassium adenosine triphosphatase: Pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 27:3–134.

    PubMed  CAS  Google Scholar 

  5. Askari, A., ed. 1974. Properties and Functions of (Na+ +K+)- Activated Adenosine Triphosphatase. Ann. N.Y. Acad. Sci. 241.

    Google Scholar 

  6. Skou, J. C., and J. G. Norby, eds. 1979. Na,K-ATPase: Structure and Kinetics. Academic Press, New York.

    Google Scholar 

  7. Bronner, F., and A. Kleinzeller, eds. 1983. Curr. Top. Membr. Transp. 19.

    Google Scholar 

  8. Phillis, J. W., and P. H. Wu. 1981. Catecholamines and the sodium pump in excitable cells.Prog. Neurobiol. 17:141–184.

    Article  PubMed  CAS  Google Scholar 

  9. Schatzmann, H. J. 1953. Herzglycoside als Hemmstoffe fur den aktiven Kalium und Nutrium Transport diirch die erythrocyten- membran. Helv. Physiol. Pharmacol. Acta 11:346–354.

    PubMed  CAS  Google Scholar 

  10. Skou, J. C. 1960. Further investigations on a Mg+ + +Na+ activated adenosine triphosphatase possibly related to the active linked transport of Na+ and K+ across the nerve membrane. Biochim. Biophys. Acta 42:6–23.

    Article  CAS  Google Scholar 

  11. Robinson, J. D., and M. S. Flashner, 1979. The (Na++K +)- activated ATPase: Enzymatic and transport properties. Biochim. Biophys. Acta 549:145–176.

    PubMed  CAS  Google Scholar 

  12. Cantley, L. C. 1981. Structure and mechanism of the (Na, K)- ATPase.Curr. Top. Bioenerg. 11:201–237.

    CAS  Google Scholar 

  13. Askari, A. 1982. Na+, K + -ATPase: Relation of conformational transitions to function. Mol. Cell. Biochem. 43:129–143.

    Article  PubMed  CAS  Google Scholar 

  14. Huang, W., and A. Askari, 1980. Ouabain-induced changes in the tertiary and the quaternary conformations of (Na+ +K+-activated adenosine triphosphatase. Mol. Pharmacol. 18:53–56.

    PubMed  CAS  Google Scholar 

  15. Cattell, M., and H. Gold. 1938. Influence of digitalis glycosides on the force of contraction of mammalian cardiac muscle. J. Pharmacol. Exp. Ther. 62:116–125.

    CAS  Google Scholar 

  16. Cattell, M., and M. Goodell. 1937. On the mechanism of action of digitalis glycosides on muscle. Science 86:106–107.

    Article  PubMed  CAS  Google Scholar 

  17. Repke, K. R. H. 1964. The biochemical action of digitalis. Klin. Wochenschr. 42:157–165.

    Article  PubMed  CAS  Google Scholar 

  18. Okita, G. T. 1977. Dissociation of Na +, K + -ATPase inhibition from digitalis inotropy. Fed. Proc. 36:2225–2230.

    PubMed  CAS  Google Scholar 

  19. Huang, W., H. M. Rhee, T. H. Chiu, and A. Askari. 1979. Re- evaluation of the relationship between the positive inotropic effect of ouabain and its inhibitory effect on (Na++K +)-dependent adenosine triphosphatase in rabbit and dog hearts. J. Pharmacol. Exp. Ther. 211:571–582.

    PubMed  CAS  Google Scholar 

  20. Noble, D. 1980. Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovas. Res. 14:495–514.

    Article  CAS  Google Scholar 

  21. Erdmann, E., G. Philipp, and H. Scholz. 1980. Cardiac glycoside receptor, (Na+ +K +)- ATPase activity and force of contraction in rat heart. Biochem. Pharmacol. 29:3219–3229.

    Article  PubMed  CAS  Google Scholar 

  22. Brodsky, W.-A., ed. 1980. Anion and Proton Transport. Ann. N.Y. Acad. Sci. 341.

    Google Scholar 

  23. Stein, W. D. 1967. The Movements of Molecules Across Cell Membranes. Academic Press, New York.

    Google Scholar 

  24. Tosteson, D. C. 1981. Cation countertransport and cotransport in human red cells. Fed. Proc. 40:1429–1433.

    PubMed  CAS  Google Scholar 

  25. Beyer, K. H., H. F. Russo, E. K. Tillson, A. K. Miller, V. F. Verwey, and S. R. Gass. 1951. “Benemid”, p-(di-n-pro- pylsulfamyl)-benzoic acid: Its renal affinity and its elimination. Am. J. Physiol. 166:625–640.

    PubMed  CAS  Google Scholar 

  26. Sullivan, L. P., and J. J. Grantham. 1982. Physiology of the Kidney, 2nd ed. Lea & Febiger, Philadelphia.

    Google Scholar 

  27. Frohlich, A., and O. Loewi. 1910. Uber eine steigerang der adren- alinempfindlichkeit diirch cocain. Arch. Exp. Pathol. Pharmakol. 62:159–169.

    Article  CAS  Google Scholar 

  28. Maxwell, R. A., R. M. Ferris, and J. E. Burcsu. 1976. Structural requirements for inhibition of noradrenaline uptake by phe- nethylamine derivatives, desipramine, cocaine, and other compounds. In: The Mechanism of Neuronal and Extraneuronal Transport of Catecholamines. D. M. Paton, ed. Raven Press, New York. pp. 95–153.

    Google Scholar 

  29. Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117:500–544.

    CAS  Google Scholar 

  30. Narahashi, T. 1972. Mechanism of action of tetrodotoxin and saxitoxin on excitable membranes. Fed. Proc. 31:1124–1132.

    PubMed  CAS  Google Scholar 

  31. Hille, B. 1970. Ionic channels in nerve membrane. Prog. Biophys. Mol. Biol. 21:1–32.

    Article  PubMed  CAS  Google Scholar 

  32. Catterall, W. A. 1980. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu. Rev. Pharmacol. Toxicol. 20:15–43.

    Article  PubMed  CAS  Google Scholar 

  33. Cuervo, L. N., and W. J. Adelman, Jr. 1970. Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon. J. Gen. Physiol. 55: 309–335.

    Article  PubMed  CAS  Google Scholar 

  34. Ritchie, J. M., and R. B. Rogart. 1977. The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev. Physiol. Biochem. Pharmacol. 79:1–50.

    Article  PubMed  CAS  Google Scholar 

  35. Barnard, E. A., J. Wieckowski, and T. H. Chiu. 1971. Cholinergic receptor molecules and cholinesterase molecules at skeletal muscle junctions. Nature (London) 234:207–209.

    Article  CAS  Google Scholar 

  36. Seeman, P. 1972. The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev. 24:583–655.

    PubMed  CAS  Google Scholar 

  37. Staiman, A., and P. Seeman. 1977. Conduction-blocking concentrations of anesthetics increase with nerve axon diameter: Studies with alcohol, lidocaine and tetrodotoxin on single myelinated fibers. J. Pharmacol. Exp. Ther. 201:340–349.

    PubMed  CAS  Google Scholar 

  38. Roth, S. H. 1979. Physical mechanisms of anesthesia. Annu. Rev. Pharmacol. Toxicol. 19:159–178.

    Article  PubMed  CAS  Google Scholar 

  39. Strichartz, G. 1976. Molecular mechanisms of nerve block by local anesthetics. Anesthesiology 45:421–441.

    Article  PubMed  CAS  Google Scholar 

  40. Seeman, P. 1974. The membrane expansion theory of anesthesia: Direct evidence using ethanol and a high precision density meter. Experientia 30:759–760.

    Article  PubMed  CAS  Google Scholar 

  41. Frazier, D. T., T. Narahashi, and M. Yamada. 1970. The site of action and active form of local anesthetics. II. Experiments with quaternary compounds. J. Pharmacol. Exp. Ther. 171:45–51.

    PubMed  CAS  Google Scholar 

  42. Triggle, D. J., andC. R. Triggle. 1976. Chemical Pharmacology of the Synapse. Academic Press, New York.

    Google Scholar 

  43. Bloom, F. E. 1980. Drugs acting on the central nervous system. In: The Pharmacological Basis of Therapeutics. A. G. Gilman, L. S. Goodman, and A. Gilman, eds. Macmillan Co., New York. pp. 235–257.

    Google Scholar 

  44. Katz, B. 1966. Nerve, Muscle, and Synapse. McGraw-Hill, New York.

    Google Scholar 

  45. Changeux, J.-P. 1981. The acetylcholine receptor: An “al- losteric” membrane protein. Harvey Lect. 75:85–254.

    CAS  Google Scholar 

  46. Conti-Tronconi, B. M., and M. A. Raftery. 1982. The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties. Annu. Rev. Biochem. 51:491–530.

    Article  PubMed  CAS  Google Scholar 

  47. Katz, B., and R. Miledi. 1972. The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. (London) 224:665–700.

    CAS  Google Scholar 

  48. Neher, E., and B. Sakmann. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature (London) 260:799–802.

    Article  CAS  Google Scholar 

  49. Katz, B., and R. Miledi. 1971. Further observations of acetylcholine noise. Nature New Biol. 232:124–126.

    Article  PubMed  CAS  Google Scholar 

  50. Katz, B., and R. Miledi. 1973. The effect of a-bungarotoxin on acetylcholine receptors. Br. J. Pharmacol. 49:138–139.

    PubMed  CAS  Google Scholar 

  51. Katz, B., and R. Miledi. 1973. The characteristics of “end-plate noise” produced by different depolarizing drugs. J. Physiol. (London) 230:707–717.

    CAS  Google Scholar 

  52. Takeuchi, A., and N. Takeuchi. 1960. On the permeability of end- plate membrane during the action of transmitter. J. Physiol. (London) 154:52–67.

    CAS  Google Scholar 

  53. Weidmann, S. 1974. Heart: Electrophysiology. Annu. Rev. Physiol. 36:155–169.

    Article  PubMed  CAS  Google Scholar 

  54. Wit, A. L., and B. F. Hoffman. 1976. Modification of the cardiac action potential by pharmacologic agents. In: Cellular Pharmacology of Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, 111. pp. 408–484.

    Google Scholar 

  55. Bolton, T. B. 1979. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59:606–718.

    PubMed  CAS  Google Scholar 

  56. Minneman, K. P., R. N. Pittman, and P. B. Molinoff. 1981. Beta- adrenergic receptor subtypes: Properties, distribution, and regulation. Annu. Rev. Neurosci. 4:419–461.

    Article  PubMed  CAS  Google Scholar 

  57. Biilbring, E., A. F. Brading, A. W. Jones, and T. Tomita. 1981. Smooth Muscle. University of Texas Press, Austin.

    Google Scholar 

  58. Biilbring, E., H. Ohashi, and T. Tomita. 1981. Adrenergic mechanisms. In: Smooth Muscle. E. Biilbring, A. F. Brading, A. W. Jones, and T. Tomita, eds. University of Texas Press, Austin, pp. 219–248.

    Google Scholar 

  59. Robison, G. A., R. W. Butcher, and E. W. Sutherland. 1971. Cyclic AMP. Academic Press, New York.

    Google Scholar 

  60. Hardman, J. G. 1981. Cyclic nucleotides and smooth muscle contraction: Some conceptual and experimental considerations. In: Smooth Muscle. E. Biilbring, A. F. Brading, A. W. Jones, andT. Tomita, eds. University of Texas Press, Austin, pp. 249–262.

    Google Scholar 

  61. Reuter, H. 1974. Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J. Physiol. (London) 242:429–451.

    CAS  Google Scholar 

  62. Tsien, R. W. 1977. Cyclic AMP and contractile activity in heart. Adv. Cyclic Nucleotide Res. 8:364–420.

    Google Scholar 

  63. McGeer, P. L., J. C. Eccles, andE. G. McGeer. 1978. Molecular Neurobiology of the Mammalian Brain. Plenum Press, New York.

    Google Scholar 

  64. Baxter, C. F. 1976. Some recent advances in studies of GAB A metabolism and compartmentation. In: GAB A in Nervous System Function. E. Roberts, T. N. Chase, and D. B. Tower, eds. Raven Press, New York. pp. 61–87.

    Google Scholar 

  65. Curtis, D. R. 1979. Gabergic transmission in the mammalian central nervous system. In: GABA-Neurotransmitters. P. Krogs-gaard-Larsen, J. Scheel-Kruger, and H. Kofod, eds. Academic Press, New York. pp. 17–27.

    Google Scholar 

  66. Davidson, N. 1976. Neurotransmitter Amino Acids. Academic Press, New York.

    Google Scholar 

  67. Tower, D. B. 1977. Neurochemistry—One hundred years, 1875- 1975. Ann. Neurol. 1:2–36.

    Article  PubMed  CAS  Google Scholar 

  68. Johnston, G. A. R. 1978. Neuropharmacology of amino acid inhibitory transmitters. Annu. Rev. Pharmacol. Toxicol. 18:269–289.

    Article  PubMed  CAS  Google Scholar 

  69. Olsen, R. W. 1982. Drug interactions at the GABA receptor- ionophore complex. Annu. Rev. Pharmacol. Toxicol. 22:245–277.

    Article  PubMed  CAS  Google Scholar 

  70. Mohler, H., and T. Okada. 1977. GABA receptor binding with 3H(+) bicuculline-methiodide in rat CNS. Nature (London) 267: 65–67.

    Article  CAS  Google Scholar 

  71. Krogsgaard-Larsen, P., G. A. R. Johnston, D. R. Curtis, C. J. A. Game, and R. M. McCulloch. 1975. Structure and biological activity of a series of conformationally restricted analogues of GABA. J. Neurochem. 25:803–809.

    Article  PubMed  CAS  Google Scholar 

  72. Haefely, W. E. 1977. Synaptic pharmacology of barbiturates and benzodiazepines. Agents Actions 7:353–359.

    Article  PubMed  CAS  Google Scholar 

  73. Iadarola, M. J., and K. Gale. 1979. Dissociation between drug- induced increases in nerve terminal and non-nerve terminal pools of GABA in vivo. Eur. J. Pharmacol. 59:125–129.

    Article  PubMed  CAS  Google Scholar 

  74. Iadarola, M. J., A. Raines, and K. Gale. 1979. Differential effects of n-dipropylacetate and amino-oxyacetic acid on y-aminobutyric acid levels in discrete areas of rat brain. J. Neurochem. 33:1119- 1123.

    Article  PubMed  CAS  Google Scholar 

  75. Goldberg, N. D., and M. K. Haddox. 1977. Cyclic GMP metabolism and involvement in biological regulation. Annu. Rev. Biochem. 46:823–896.

    Article  PubMed  CAS  Google Scholar 

  76. Murad, F., W. P. Arnold, C. K. Mittal, and J. M. Braughler. 1979. Properties and regulation of guanylate cyclase and some proposed functions for cyclic GMP. Adv. Cyclic Nucleotide Res. 11:175–204.

    PubMed  CAS  Google Scholar 

  77. Rasmussen, H. 1981. Calcium and cAMP as Synarchic Messengers. Wiley, New York.

    Google Scholar 

  78. Perkins, J. P. 1973. Adenyl cyclase. Adv. Cyclic Nucleotide Res. 3:1–64.

    PubMed  CAS  Google Scholar 

  79. Schramm, M., J. Orly, S. Eimerl, andM. Korner. 1977. Coupling of hormone receptors to adenylate cyclase of different cells by cell fusion. Nature (London) 268:310–313.

    Article  CAS  Google Scholar 

  80. Rodbell, M. 1980. The role of hormone receptors and GTP-reg- ulatory proteins in membrane transduction. Nature (London) 284: 17–22.

    Article  CAS  Google Scholar 

  81. Limbird, L. E. 1981. Activation and attenuation of adenylate cyclase: The role of GTP-binding proteins as macromolecular messengers in receptor-cyclase coupling. Biochem. J. 195:1–13.

    PubMed  CAS  Google Scholar 

  82. Selinger, Z., and D. Cassel. 1981. Role of guanine nucleotides in hormonal activation of adenylate cyclase. Adv. Cyclic Nucleotide Res. 14:15–22.

    PubMed  CAS  Google Scholar 

  83. Jakobs, K. H. 1979. Inhibition of adenylate cyclase by hormones and neurotransmitters. Mol. Cell. Endrocrinol. 16:147–156.

    Article  CAS  Google Scholar 

  84. Ross, E. M., and A. G. Gilman. 1980. Biochemical properties of hormone-sensitive adenylate cyclase. Annu. Rev. Biochem. 49: 533–564.

    Article  PubMed  CAS  Google Scholar 

  85. Cuatrecasas, P. 1975. Hormone receptors—Their function in cell membranes and some problems related to methodology. Adv. Cyclic Nucleotide Res. 5:79–103.

    PubMed  CAS  Google Scholar 

  86. Moss, J., and M. Vaughan. 1979. Activation of adenylate cyclase by choleragen. Annu. Rev. Biochem. 48:581–600.

    Article  PubMed  CAS  Google Scholar 

  87. Seamon, K. B., and J. W. Daly. 1981. Forskolin: A unique diter- pene activator of cyclic AMP-generating systems. J. Cyclic Nucleotide Res. 7:201–224.

    PubMed  CAS  Google Scholar 

  88. Darfler, F. J., L. C. Mahan, A. M. Koachman, and P. A. Insel. 1982. Stimulation by forskolin of intact S49 lymphoma cells involves the nucleotide regulatory protein of adenylate cyclase. J. Biol. Chem. 257:11901–11907.

    PubMed  CAS  Google Scholar 

  89. Ringer, S. 1883. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. (London) 4:29–42.

    CAS  Google Scholar 

  90. Rubin, R. P. 1982. Calcium and Cellular Secretion. Plenum Press, New York.

    Google Scholar 

  91. Bianchi, C. P. 1968. Cell Calcium. Butterworths, London.

    Google Scholar 

  92. Blinks, J. R. 1978. Applications of calcium-sensitive photopro- teins in experimental biology. Photochem. Photobiol. 27:423–432.

    Article  PubMed  CAS  Google Scholar 

  93. Borle, A. B., and K. W. Snowdowne. 1982. Measurement of intracellular free calcium in monkey kidney cells with aequorin. Science 217:252–254.

    Article  PubMed  CAS  Google Scholar 

  94. Murphy, E., K. Coll, T. L. Rich, and J. R. Williamson. 1980. Hormonal effects on calcium homeostasis in isolated hepatocytes. J. Biol. Chem. 255:6600–6608.

    PubMed  CAS  Google Scholar 

  95. O’Doherty, J., S. J. Youmans, W. M. Armstrong, andR. J. Stark. 1980. Calcium regulation during stimulus-secretion coupling: Continuous measurement of intracellular calcium activities. Science 209:510–513.

    Article  PubMed  Google Scholar 

  96. Tsien, R. Y., T. Pozzan, and T. J. Rink. 1982. Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell Biol. 94:325–334.

    Article  PubMed  CAS  Google Scholar 

  97. Baker, P. F. 1972. Transport and metabolism of calcium ions in nerve. Prog. Biophys. Mol. Biol. 24:177–233.

    Article  PubMed  CAS  Google Scholar 

  98. Atwater, I., E. Rojas, and J. Vergara. 1974. Calcium influxes and tension development in perfused single barnacle muscle fibers under membrane potential control. J. Physiol. (London) 243:523–552.

    CAS  Google Scholar 

  99. Putney, J. W., Jr. 1978. Stimulus-permeability coupling: Role of calcium in the receptor regulation of membrane permeability. Pharmacol. Rev. 30:209–245.

    PubMed  CAS  Google Scholar 

  100. Petersen, O. H. 1980. The neurophysiology of Gland Cells. Academic Press, New York.

    Google Scholar 

  101. Exton, J. H. 1981. Mechanisms involved in a-adrenergic effects of catecholamines. In: Adrenoceptors and Catecholamine Action, Part A. G. Kunox, ed. Wiley-Interscience, New York. pp. 117–129.

    Google Scholar 

  102. Putney, J. W., Jr., J. Poggioli, and S. J. Weiss. 1981. Receptor regulation of calcium release and calcium permeability in parotid gland cells. Philos. Trans. R. Soc. London Ser. B 296:37–45.

    Article  CAS  Google Scholar 

  103. Hokin, M. R., and L. E. Hopkin. 1953. Enzyme secretion and the incorporation of P32 into phospholipids of pancreas slices. J. Biol. Chem. 203:967–977.

    PubMed  CAS  Google Scholar 

  104. Michell, R. H. 1975. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415:81–147.

    PubMed  CAS  Google Scholar 

  105. Salmon, D. M., and T. W. Honeyman. 1980. Proposed mechanism of cholinergic action in smooth muscle. Nature (London) 284:344–345.

    Article  CAS  Google Scholar 

  106. Putney, J. W., Jr., S. J. Weiss, C. M. VanDeWalle, and R. A. Haddas. 1980. Is phosphatidic acid a calcium ionophore under neurohumoral control? Nature (London) 284:345–347.

    Article  CAS  Google Scholar 

  107. Putney, J. W., Jr. 1981. Recent hypotheses regarding the phos- phatidylinositol effect. Life Sci. 29:1183–1194.

    Article  PubMed  CAS  Google Scholar 

  108. Berridge, M. J. and R. F. Irvine. 1984. Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature (London) 312:315–321.

    Article  CAS  Google Scholar 

  109. Cockroft, S. 1981. Does phosphatidylinositol breakdown control the Ca2 +-gating mechanism? Trends Pharmacol. Sci. 2:340–342.

    Article  Google Scholar 

  110. Hawthorne, J. N. 1982. Is phosphatidylinositol now out of the calcium gate? Nature (London) 295:281–282.

    Article  CAS  Google Scholar 

  111. Michell, R. H. 1982. The unknown meaning of receptor-stimulated inositol lipid metabolism. Trends Pharmacol. Sci. 3:140–141.

    Article  Google Scholar 

  112. Michell, R. H. 1982. Is phosphatidylinositol really out of the calcium gate? Nature (London) 298:492–493.

    Article  Google Scholar 

  113. Caldwell, P. C. 1970. Calcium chelation and buffers. In: Calcium and Cellular Function. A. W. Cuthbert, ed. St. Martins Press, New York. pp. 10–16.

    Google Scholar 

  114. Rojas, E., R. E. Taylor, I. Atwater, and F. Bezanilla. 1969. Analysis of the effect of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium. J. Gen. Physiol. 54:532–552.

    Article  PubMed  CAS  Google Scholar 

  115. Bianchi, C. P. 1975. Cellular pharmacology of contraction of skeletal muscle. In: Cellular Pharmacology of Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, 111. pp. 485–519.

    Google Scholar 

  116. Feinstein, M. B. 1966. Inhibition of contraction and calcium exchangeability in rat uterus by local anesthetics. J. Pharmacol. Exp. Ther. 152:516–524.

    PubMed  CAS  Google Scholar 

  117. Somlyo, A. P. 1975. Vascular smooth muscle. In: Cellular Pharmacology of Excitable Tissues. T. Narahashi, ed. Thomas, Springfield, 111. pp. 360–407.

    Google Scholar 

  118. Weiss, G. B. 1970. On the site of action of lanthanum in frog sartorius muscle. J. Pharmacol. Exp. Ther. 174:517–526.

    PubMed  CAS  Google Scholar 

  119. Weiss, G. B. 1974. Cellular pharmacology of lanthanum. Annu. Rev. Pharmacol. 14:343–354.

    Article  CAS  Google Scholar 

  120. Miledi, R. 1971. Lanthanum ions abolish the “calcium response” of nerve terminals. Nature (London) 229:410–411.

    Article  CAS  Google Scholar 

  121. Borowicz, J. L. 1972. Effect of lanthanum on catecholamine release from adrenal medulla. Life Sci. 11:959–964.

    Article  Google Scholar 

  122. Leslie, B. A., J. W. Putney, Jr., and J. M. Sherman. 1976. α- Adrenergic, β-adrenergic and cholinergic mechanisms for amylase secretion by rat parotid gland in vitro. J. Physiol. (London) 260:351–370.

    CAS  Google Scholar 

  123. Putney, J. W., Jr. 1976. Biphasic modulation of potassium release in rat parotid gland by carbachol and phenylephrine. J. Pharmacol. Exp. Ther. 198:375–384.

    PubMed  CAS  Google Scholar 

  124. Fleckenstein, A. 1977. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu. Rev. Pharmacol. Toxicol. 17:149–166.

    Article  PubMed  CAS  Google Scholar 

  125. Triggle, D. J. 1981. Calcium antagonists: Basic chemical and pharmacological aspects. In: New Perspectives on Calcium Antagonists. G. B. Weiss, ed. American Physiological Society, Washington, D.C. pp. 1–18.

    Google Scholar 

  126. Glossman, H., D. R. Ferry, F. Lübbecke, R. Mewes, and F. Hofmann. 1982. Calcium channels: Direct identification with radioligand binding studies. Trends Pharmacol. Sci. 3:431–437.

    Article  Google Scholar 

  127. Corrado, A. P., W. A. Prado, and I. P. deMorais. 1975. Competitive antagonism between calcium and aminoglycoside antibiotics in skeletal and smooth muscles. In: Concepts of Membranes in Regulation and Excitation. M. Rocha e Silva and G. Suarez- Kurtz, eds. Raven Press, New York. pp. 201–215.

    Google Scholar 

  128. Goodman, F. R., G. B. Weiss, and H. R. Adams. 1974. Alterations by neomycin of 45Ca movements and contractile responses in vascular smooth muscle. J. Pharmacol. Exp. Ther. 188:472–480.

    PubMed  CAS  Google Scholar 

  129. Pressman, B. C. 1976. Biological applications of ionophores. Annu. Rev. Biochem. 45:501–530.

    Article  PubMed  CAS  Google Scholar 

  130. Chandler, D. E., and J. A. Williams. 1977. Intracellular uptake and ±-amylase and lactate dehydrogenase releasing actions of the divalent cation ionophore A23187 in dissociated pancreatic acinar cells. J. Membr. Biol. 32:201–230.

    Article  PubMed  CAS  Google Scholar 

  131. Liu, C.-M., and T. E. Herman. 1978. Characterization of. ionomycin as a calcium ionophore.J. Biol. Chem. 253:5892

    PubMed  CAS  Google Scholar 

  132. Poggioli, J., B. A. Leslie, J. S. McKinney, S. J. Weiss, and J. W. Putney, Jr. 1982. Actions of ionomycin in rat parotid gland. J. Pharmacol. Exp. Ther. 221:247–253.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Publishing Corporation

About this chapter

Cite this chapter

Rosenberg, H.C., Chiu, T.H., Putney, J.W., Askari, A. (1987). Modification of Membrane Function by Drugs. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D., Schultz, S.G. (eds) Membrane Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1943-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1943-6_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42697-1

  • Online ISBN: 978-1-4613-1943-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics