Advertisement

Active Transport of Na+ and K+ by Red Blood Cells

  • Joseph F. Hoffman

Abstract

This chapter on active transport is intended to be a rather practical treatment of the subject in terms of what active transport is, how it can be distinguished from other types of membrane transport, and a survey of some of its characteristics. The idea that active transport occurs stems from the fact that cells are able to accumulate and maintain large concentration gradients of permeant ions across their plasma membranes. Because of the ubiquitous occurrence of such processes in living cells and tissues, our purpose can best be served by limiting our discussion to the membrane transport of the cations, Na+ and K+, and using information derived mainly from studies on human red blood cells. Thus, it is hoped that our considerations of basic principles in one cell type will emphasize those features common to all cell types rather than those differences which distinguish one type of cell from another.

Keywords

Active Transport Adenosine Triphosphatase Sodium Pump Ouabain Binding Unidirectional Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, D. W. 1967. Cation transport in duck erythrocytes. Ph.D. thesis. Duke University.Google Scholar
  2. 2.
    Bader, H., and A. K. Sen. 1966. (K+)-dependent acyl phosphate as part of the (Na + + K +)-dependent ATPase of cell membranes. Biochim. Biophys. Acta 118:116.PubMedGoogle Scholar
  3. 3.
    Battley, E. H., and I. M. Klotz. 1951. Interaction of sodium and potassium ions with hemoglobin and with hemerythrin. Biol. Bull. 101:215.Google Scholar
  4. 4.
    Beaugé, L. A., and N. Adragna. 1971. The kinetics of ouabain inhibition and the partition of rubidium influx in human red blood cells. J. Gen. Physiol. 51.516.Google Scholar
  5. 5.
    Beaugé, L. A., and I. M. Glynn. 1979. Sodium ions, acting at high-affinity extracellular sites, inhibit sodium-ATPase activity of the sodium pump by slowing dephosphorylation. J. Physiol. (London) 289:17.Google Scholar
  6. 6.
    Bergelson, L. D., and L.I. Barsukov 1977. Topological asymmetry of phospholipids in membranes. Science 197:244.CrossRefGoogle Scholar
  7. 7.
    Blostein, R. 1968. Relationships between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis. J. Biol. Chem. 243:1957.PubMedGoogle Scholar
  8. 8.
    Blostein, R. 1970. Sodium activated adenosine triphosphatase activity of the erythrocyte membrane.J. Biol. Chem. 245:270.PubMedGoogle Scholar
  9. 9.
    Blostein, R., H. A. Pershadsingh, P. Drapeau, and L. Chu. 1979. Side-specificity of alkali cation interactions with Na, K-ATPase. In: Na, K-ATPase. J. C. Skou and J. G. Norby, eds. Academic Press, New York. p. 233.Google Scholar
  10. 10.
    Blostein, R. 1983. Sodium pump-catalyzed sodium-sodium exchange associated with ATP hydrolysis. J. Biol. Chem. 258: 7948.PubMedGoogle Scholar
  11. 11.
    Blostein, R. 1985. Proton activities of sodium pump mediated Rb transport. In: Fourth Conference on Na, K-ATPase. I. M. Glynn and J. C. Ellory, eds. Company of Biologists, Cambridge, U.K., in press.Google Scholar
  12. 12.
    Blostein, R., and L. Chu. 1977. Sidedness of (sodium, potassium)-adenosine triphosphatase of inside-out red cell membrane vesicles. J. Biol. Chem. 252:3035.PubMedGoogle Scholar
  13. 13.
    Bodemann, H. H., and J. F. Hoffman. 1976. Side-dependent effects of internal versus external Na and K on ouabain binding to reconstituted human red blood cell ghosts. J. Gen. Physiol. 67:497.PubMedCrossRefGoogle Scholar
  14. 14.
    Bodemann, H. H., and J. F. Hoffman. 1976. Effects of Mg and Ca on the side dependencies of Na and K on ouabain binding to red cell ghosts and the control of Na transport by internal Mg. J. Gen. Physiol. 67:547.PubMedCrossRefGoogle Scholar
  15. 15.
    Bodemann, H. H., H. Reichmann, T. J. Callahan, and J. F. Hoffman. 1983. Side dependent ion effects on the rate of ouabain binding to reconstituted human red cell ghosts. Curr. Top. Membr. Transp. 19:229.Google Scholar
  16. 16.
    Cantley, L. C., M. Resh, and G. Guidotti. 1978. Vanadate inhibits the red cell Na, K-ATPase from the cytoplasmic side. Nature (London) 272:552.CrossRefGoogle Scholar
  17. 17.
    Cavieres, J. D. 1977. The sodium pump in human red cells. In: Transport in Red Cells. J. C. Ellory and V. L. Lew, eds. Academic Press, New York.Google Scholar
  18. 18.
    Cavieres, J. D. 1980. Extracellular sodium stimulates ATP-ADP exchange by the sodium pump. J. Physiol. 308:57P.Google Scholar
  19. 19.
    Cavieres, J. D., and I. M. Glynn. 1979. Sodium-sodium exchange through the sodium pump: The roles of ATP and ADP. J. Physiol. (London ) 297:637.Google Scholar
  20. 20.
    Cook, J. S. 1965. The quantitative interrelationships between ion fluxes, cell swelling and radiation dose in ultraviolet hemolysis. J. Gen. Physiol. 48:719.PubMedCrossRefGoogle Scholar
  21. 21.
    Cook, J. S. 1967. Nonsolvent water in human erythrocytes. J. Gen. Physiol. 50:1311.PubMedCrossRefGoogle Scholar
  22. 22.
    Dalmark, M. 1975. Chloride and water distribution in human red cells. J. Physiol. (London) 250:65.Google Scholar
  23. 23.
    Danowski, T. S. 1941. The transfer of potassium across the human blood cell membrane. J. Biol. Chem. 139:693.Google Scholar
  24. 24.
    Dean, R. B. 1941. Theories of electrolyte equilibrium in muscle. Biol. Symp. 3:331.Google Scholar
  25. 25.
    Dick, D. A. T. 1959. Osmotic properties of living cells. Int. Rev. Cytol. 8:387.PubMedCrossRefGoogle Scholar
  26. 26.
    Dick, D. A. T. 1967. An approach to the molecular structure of the living cells by water flux studies. In: Physical Basis of Circulatory Transport. E. B. Reeve and A. G. Guyton, eds. Saunders, Philadelphia. p. 217.Google Scholar
  27. 27.
    Dissing, S., and J. F. Hoffman. 1983. Anion-coupled Na efflux mediated by the Na/K pump in human red blood cells. Curr. Top. Membr. Transp. 19:693.Google Scholar
  28. 28.
    Dunham, E. T., and I. M. Glynn. 1961. Adenosine triphosphatase activity and the active movements of alkali metal ions. J. Physiol. (London) 156:274.Google Scholar
  29. 29.
    Dunham, P. B. 1976. Passive potassium transport in LK sheep red cells: Effects of anti-L antibody and intracellular potassium. J. Gen. Physiol. 68:567.PubMedCrossRefGoogle Scholar
  30. 30.
    Dunham, P. B., and J. S. Bleier. 1973. Potassium effluxes in goat red blood cells. Physiologist 16:567.Google Scholar
  31. 31.
    Dunham, P. B., and R. Blostein. 1976. Active potassium transport in reticulocytes of high-K+ and low-K+ sheep. Biochim. Biophys. Acta 455:749.PubMedCrossRefGoogle Scholar
  32. 32.
    Dunham, P. B., and J. F. Hoffman. 1970. Partial purification of the ouabain-binding component and of Na, K-ATPase from human red cell membranes.Proc. Natl. Acad. Sci. USA 66:936.PubMedCrossRefGoogle Scholar
  33. 33.
    Dunham, P. B., and J. F. Hoffman. 1971. Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep.J. Gen. Physiol. 58:94.PubMedCrossRefGoogle Scholar
  34. 34.
    Dunham, P. B., and O. Senyk. 1977. Lithium efflux through the Na/K pump in human erythrocytes. Proc. Natl. Acad. Sci. USA 74:3099.PubMedCrossRefGoogle Scholar
  35. 35.
    Edzes, H. T., and H. J. C. Berendsen. 1975. The physical state of diffusible ions in cells. Biophys. Bioeng. 4:265.CrossRefGoogle Scholar
  36. 36.
    Eisenmann, G. 1961. On the elementary atomic origin of equilibrium ionic specificity. In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, eds. Academic Press, New York. p. 163.Google Scholar
  37. 37.
    Fahn, S., M. R. Hurley, G. J. Koval, and R. W. Albers. 1966. Sodium-potassium-activated adenosine triphosphatase ofElec– trophorus electric organ. II. Effects of N-ethylmaleimide and other sulfhydryl reagents.J. Biol. Chem. 214:1890.Google Scholar
  38. 38.
    Fahn, S., G. J. Koval, and R. W. Albers. 1968. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. V. Phosphorylation by adenosine triphosphate-32?. J. Biol. Chem. 243:1993.PubMedGoogle Scholar
  39. 39.
    Fitzsimons, E. J., and J. Sendroy. 1961. Distribution of electrolytes in human blood. J. Biol. Chem. 236:1596.Google Scholar
  40. 40.
    Forbush, B. 1983. Cardiotonic steroid binding to Na, K-ATPase. Curr. Top. Membr. Transp. 19:167.Google Scholar
  41. 41.
    Freedman, J. C., and J. F. Hoffman. 1978. Ionic and osmotic equilibria of human red blood cells treated with nystatin. J. Gen. Physiol. 74:157.CrossRefGoogle Scholar
  42. 42.
    Fricke, H., and S. Morse. 1925. The electric resistance and capacity of blood for frequencies between 800 and 4$ million cycles. J. Gen. Physiol. 9:153.PubMedCrossRefGoogle Scholar
  43. 43.
    Funder, J., and J. O. Wieth. 1966. Chloride and hydrogen ion distribution between human red cells and plasma. Acta Physiol. Scand. 68:234.CrossRefGoogle Scholar
  44. 44.
    Garay, R. P., and P. J. Garrahan. 1973. The interaction of sodium and potassium with the sodium pump in red cells. J. Physiol. (London ) 231:297.Google Scholar
  45. 45.
    Gardos, G. 1954. Akkumulation der Kaliumionen durch menschliche Blutkörperchen.Acta Physiol. Acad. Sci. Hung. 6:191.Google Scholar
  46. 46.
    Garrahan, P. J., and I. M. Glynn. 1967. The behaviour of the sodium pump in red cells in the absence of external potassium. J. Physiol. (London) 192:159.Google Scholar
  47. 47.
    Garrahan, P. J., and I. M. Glynn. 1967. Factors affecting the relative magnitudes of the sodium.potassium and sodium.sodium exchanges catalysed by the sodium pump. J. Physiol. (London) 192:189.Google Scholar
  48. 48.
    Garrahan, P. J., and I. M. Glynn. 1967. The stoichiometry of the sodium pump. J. Physiol. (London) 192:217.Google Scholar
  49. 49.
    Garrahan, P. J., and I. M. Glynn. 1967. The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump. J. Physiol. (London) 192:237.Google Scholar
  50. 50.
    Garrahan, P. J., M. I. Pouchan, and A. F. Rega. 1969. Potassium– activated phosphatase from human red blood cells: The mechanism of potassium activation. J. Physiol. (London) 202:305.Google Scholar
  51. 51.
    Gary-Bobo, C. M., and A. K. Solomon. 1968. Properties of hemoglobin solutions in red cells. J. Gen. Physiol. 52:825.PubMedCrossRefGoogle Scholar
  52. 52.
    Gary-Bobo, C. M., and A. K. Solomon. 1971. Hemoglobin charge dependence on hemoglobin concentration in vitro. J. Gen. Physiol. 57:283.PubMedCrossRefGoogle Scholar
  53. 53.
    Glynn, I. M. 1956. Sodium and potassium movements in human red cells. J. Physiol. (London) 134:278.Google Scholar
  54. 54.
    Glynn, I. M. 1957. The action of cardiac glycosides on sodium and potassium movements in human red cells. J. Physiol. (London) 136:148.Google Scholar
  55. 55.
    Glynn, I. M. 1962. Activation of adenosinetriphosphatase activity in a cell membrane by external potassium and internal sodium. J. Physiol. (London) 160: 18P.Google Scholar
  56. 56.
    Glynn, I. M. 1985. The Na, K-transporting adenosine triphosphatase. In: The Enzymes of Biological Membranes, Vol. 3, 2nd ed. A. Martonosi, ed. Plenum Press, New York.Google Scholar
  57. 57.
    Glynn, I. M., and J. C. Ellory, eds. 1985. Fourth Conference on Na, K-ATPase. Company of Biologists, Cambridge, U.K., in press.Google Scholar
  58. 58.
    Glynn, I. M., and J. F. Hoffman. 1971. Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells. J. Physiol. (London) 218:239.Google Scholar
  59. 59.
    Glynn, I. M., J. F. Hoffman, and V. L. Lew. 1971. Some “partial reactions” of the sodium pump. Philos. Trans. R. Soc. London Ser. B 262:91.Google Scholar
  60. 60.
    Glynn, I. M., and S. J. D. Karlish. 1975. The sodium pump. Annu. Rev. Physiol. 37:13.PubMedCrossRefGoogle Scholar
  61. 61.
    Glynn, I. M., and S. J. D. Karlish. 1976. ATP hydrolysis associated with an uncoupled sodium flux through the socium pump: Evidence for allosteric effects of intercellular ATP and extracellular sodium. J. Physiol. (London) 256:465.Google Scholar
  62. 62.
    Glynn, I. M., and V. L. Lew. 1970. Synthesis of adenosine triphosphate at the expense of downhill cation movements in intact red cells. J. Physiol. (London) 207:393.Google Scholar
  63. 63.
    Glynn, I. M., V. L. Lew, and U. Luthi. 1970. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J. Physiol. (London) 207:371.Google Scholar
  64. 64.
    Goldman, D. E. 1943. Potential, impedance and rectification in membranes. J. Gen. Physiol. 27:37.PubMedCrossRefGoogle Scholar
  65. 65.
    Harris, E. J., and M. Maizels. 1951. The permeability of human erythrocytes to sodium. J. Physiol. (London) 113:506.Google Scholar
  66. 66.
    Harris, J. E. 1941. The influence of the metabolism of human erythrocytes on their potassium content.J. Biol. Chem. 141:579.Google Scholar
  67. 67.
    Hilden, S., and L. Hokin. 1975. Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthis. J. Biol. Chem. 250:6296.Google Scholar
  68. 68.
    Hille, B. 1972. The permeability of the sodium channel to metal cations in myelinated nerves. J. Gen. Physiol. 59:637.PubMedCrossRefGoogle Scholar
  69. 69.
    Hille, B. 1973. Potassium channel in myelinated nerve: Selective permeability to small cations. J. Gen. Physiol. 61:669.PubMedCrossRefGoogle Scholar
  70. 70.
    Hobbs, A. S., and P. B. Dunham. 1975. Comparison of the effects of external monovalent cations on active cation transport and on the rate of ouabain binding in human red cells. Fed. Proc. 34:249.Google Scholar
  71. 71.
    Hobbs, A. S., and P. B. Dunham. 1976. Evidence for two sodium sites on the external aspect of Na-K pump in human erythrocytes. Nature 260:651.PubMedCrossRefGoogle Scholar
  72. 72.
    Hober, R. 1912. Einzweites Verfahren, die Leitfahrigkeit im In– nern von Zellen zu messen.Pfliiegers Arch. 133:237.CrossRefGoogle Scholar
  73. 73.
    Hodgkin, A. L., and B. Klatz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (London) 108:37.Google Scholar
  74. 74.
    Hoffman, J. F. 1958. Physiological characteristics of human red blood cell ghosts. J. Gen. Physiol. 42:9.PubMedCrossRefGoogle Scholar
  75. 75.
    Hoffman, J. F. 1960. The link between metabolism and the active transport of Na in human red cell ghosts. Fed. Proc. 19:127.Google Scholar
  76. 76.
    Hoffman, J. F. 1962. The active transport of sodium by ghosts of human red blood cells. J. Gen. Physiol. 45:837.PubMedCrossRefGoogle Scholar
  77. 77.
    Hoffman, J. F. 1962. Properties of the active cation transport system in rat red blood cells.Fed. Proc. 21:145.Google Scholar
  78. 78.
    Hoffman, J. F. 1966. The red cell membrane and the transport of sodium and potassium. Am. J. Med. 41:666.PubMedCrossRefGoogle Scholar
  79. 79.
    Hoffman, J. F. 1969. The interaction between tritiated ouabain and the Na-K pump in red blood cells.J. Gen. Physiol. 54:343s.Google Scholar
  80. 80.
    Hoffman, J. F. 1972. Sidedness of the red cell Na:K pump. In: Role of Membranes in Secretory Processes. L. Bolis, R. D. Keynes, and W. Wilbrandt, eds. North-Holland, Amsterdam, p. 203.Google Scholar
  81. 81.
    Hoffman, J. F. 1980. The link between metabolism and active transport of sodium in human red cell ghosts. J. Membr. Biol. 57:143.PubMedCrossRefGoogle Scholar
  82. 82.
    Hoffman, J. F., M. Eden, J. S. Barr, and R. H. S. Bedell. 1958. The hemolytic volume of human erythrocytes. J. Cell. Comp. Physiol. 51:405.CrossRefGoogle Scholar
  83. 83.
    Hoffman, J. F., and B. Forbush, eds. 1983. Structure, Mechanism and Function of the Na/K Pump. Curr. Top. Membr. Transp. 19. Google Scholar
  84. 84.
    Hoffman, J. F., J. H. Kaplan, and T. J. Callahan. 1979. The Na:K pump in red cells is electrogenic. Fed. Proc. 38:2440.PubMedGoogle Scholar
  85. 85.
    Hoffman, J. F., and P. C. Laris. 1974. Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe.J. Physiol. (London) 239:519.Google Scholar
  86. 86.
    Hoffman, J. F., and P. C. Laris. 1984. Membrane electrical parameters of normal human red blood cells. In: Electrogenic Transport. M. P. Blaustein and M. Liebermann, eds. Raven Press, New York. p. 287.Google Scholar
  87. 87.
    Hoffman, J. F., and U. V. Lassen. 1971. Plasma membrane potentials in Amphiuma red cells. In: Proceedings: XXV International Congress on Physiological Science, Volume IX. p. 243.Google Scholar
  88. 88.
    Hunter, M. J. 1971. A quantitative estimate of the non-exchange– restricted chloride permeability of the human red cell. J. Physiol. (London) 218:49P.Google Scholar
  89. 89.
    Hutchinson, E. 1952. Behavior of human erythrocytes in aqueous alcohol solutions. Arch. Biochem. Biophys. 38:35.PubMedCrossRefGoogle Scholar
  90. 90.
    Ingram, C. J. 1970. The binding of ouabain to human red blood cells. Ph.D. thesis. Yale University.Google Scholar
  91. 91.
    Jacobs, M. H., and D. R. Stewart. 1947. Osmotic properties of the erythrocyte. XII. Ionic and osmotic equilibria with a complex external solution. J. Cell. Comp. Physiol. 30:79.CrossRefGoogle Scholar
  92. 92.
    Joiner, C. H., and P. K. Lauf. 1978. The correlation between ouabain binding and K pump inhibition in human and sheep erythrocytes. J. Physiol. (London) 283:155.Google Scholar
  93. 93.
    Joiner, C. H., and P. K. Lauf. 1978. Modulation of ouabain binding and potassium pump fluxes by cellular sodium and potassium in human and sheep erythrocytes. J. Physiol. (London) 283:177.Google Scholar
  94. 94.
    Jørgensen, P. L. 1974. Purification and characterization of (Na+ + K +)-ATPase. IV. Estimation of the purity and of the molecular weight and polypeptide content per enzyme unit in preparation from the outer medulla of rabbit kidney. Biochim. Biophys. Acta 356:53.PubMedCrossRefGoogle Scholar
  95. 95.
    Jørgensen, P. L. 1975. Purification and characterization of (Na + + K +)-ATPase. V. Conformational changes in the enzyme transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim. Biophys. Acta 401:399.PubMedCrossRefGoogle Scholar
  96. 96.
    Jørgensen, P. L., D. Hansen, I. M. Glynn, and J. D. Cavieres. 1973. Antibodies to pig kidney (Na + + K +)-ATPase inhibit Na + pump in human red cells provided they have access to the inner surface of the cell membranes. Biochim. Biophys. Acta 291:795.PubMedCrossRefGoogle Scholar
  97. 97.
    Judah, J. D., K. Ahmed, and A. E. M. Mean. 1962. Ion transport and phosphoproteins of human red cells. Biochim. Biophys. Acta 65:472.CrossRefGoogle Scholar
  98. 98.
    Kaplan, J. H. 1983. Sodium ions and the sodium pump: Transport and enzymatic activity.Am. J. Physiol. 245:G327.PubMedGoogle Scholar
  99. 99.
    Kaplan, J. H., and R. J. Hollis. 1980. External Na dependence of ouabain-sensitive ATP:ADP exchange initiated by photolysis of intracellular caged-ATP in human red cell ghosts. Nature (London) 288:587.CrossRefGoogle Scholar
  100. 100.
    Kaplan, J. H., and L. J. Kenney. 1982. ADP supports ouabain– sensitive K:K exchange in human red blood cells. Ann. N. Y. Acad. Sci. 402:292.PubMedCrossRefGoogle Scholar
  101. 101.
    Kaplan, J. H., and. J. Kenney. 1983. Red cell Na pump E1P ⇌ E2P conversion is blocked at 0°C. Biophys. J. 41:4a.Google Scholar
  102. 102.
    Katchalsky, A. 1970. A thermodynamic consideration of active transport. In: Permeability and Function of Biological Membranes. L. Bolis, A. Katchalsky, R. D. Keynes, W. R. Loewen– stein, and B. A. Pethica, eds. North-Holland, Amsterdam, p. 20.Google Scholar
  103. 103.
    Kennedy, B. G., G. Lunn, and J. F. Hoffman. 1983. Effect of internal adenosine nucleotides on sodium pump-catalyzed Na-Na and Na-K exchanges. Curr. Top. Membr. Transp. 19:683.Google Scholar
  104. 104.
    Kepner, G. R., and R. I. Macey. 1968. Membrane enzyme systems: Molecular size determination by radiation inactivation.Biochim. Biophys. Acta 163:188.PubMedCrossRefGoogle Scholar
  105. 105.
    Knauf, P. A., F. Proverbio, and J. F. Hoffman. 1974. Elec– trophoretic separation of different phosphoproteins associated with Ca-ATPase and Na, K-ATPase in human red cell ghosts. J. Gen. Physiol. 63:324.PubMedCrossRefGoogle Scholar
  106. 106.
    Knight, A. B., and L. G. Welt. 1974. Intracellular potassium: A determinant of the sodium-potassium pump rate.J. Gen. Physiol. 63:351.PubMedCrossRefGoogle Scholar
  107. 107.
    Kregenow, F. M. 1973. The response of duck erythrocytes to norepinephrine and an elevated extracellular potassium. J. Gen. Physiol. 61:509.PubMedCrossRefGoogle Scholar
  108. 108.
    Lassen, U. V. 1972. Membrane potential and membrane resistance of red cells. In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status. M. Rørth and P. Astrup, eds. Munksgaard, Copenhagen, p. 291.Google Scholar
  109. 109.
    Lee, K. H., and R. Blostein. 1980. Red cell sodium fluxes catalyzed by the sodium pump in the absence of K and ADP.Nature (London) 285:338.CrossRefGoogle Scholar
  110. 110.
    Lew, V. L., I. M. Glynn, and J. C. Ellory. 1970. Net synthesis of ATP by reversal of the sodium pump. Nature (London) 225:865.CrossRefGoogle Scholar
  111. 111.
    Maizels, M. 1968. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium, or lithium chloride. J. Physiol. (London) 195:657.Google Scholar
  112. 112.
    Monaghey, P. D., and M. Maizels. 1962. Cation exchanges of lactose-treated human red cells. J. Physiol. (London) 162:485.Google Scholar
  113. 113.
    Mercer, R. W., and P. B. Dunham. 1981. Membrane-bound ATP fuels the Na/K pump: Studies on membrane bound glycolytic enzymes on inside-out vesicles from human red cell membranes. J. Gen. Physiol. 78:547.PubMedCrossRefGoogle Scholar
  114. 114.
    Miller, D. M. 1964. Sugar uptake as a function of cell volume in human erythrocytes. J. Physiol. (London) 170:219.Google Scholar
  115. 115.
    Minakami, S., K. Kakinuma, and H. Yoshikawa. 1964. The control of erythrocyte glycolysis by active cation transport. Biochim. Biophys. Acta 90:434.PubMedCrossRefGoogle Scholar
  116. 116.
    Morris, R., and R. D. Wright. 1954. On the interaction of hemoglobin with sodium and potassium. Aust. J. Exp. Biol. Med. Sci. 32:669.PubMedCrossRefGoogle Scholar
  117. 117.
    Mullins, L. J. 1975. Ion selectivity of carriers and channels. Biophys. J. 15:921.PubMedCrossRefGoogle Scholar
  118. 118.
    Murphy, J. M. 1963. Erythrocyte metabolism. V. Active cation transport and glycolysis. J. Lab. Clin. Med. 61:567.PubMedGoogle Scholar
  119. 119.
    Newsholme, E. A., and C. Start. 1973. Regulation ietabolism. Wiley, New York. p. 349.Google Scholar
  120. 120.
    Okonkwo, P. O., G. Longenecker, and A. Askari. 1975. Studies on the mechanism of the inhibition of red cell metabolism by cardiac glycosides. J. Pharmacol. Exp. Ther. 194:244.PubMedGoogle Scholar
  121. 121.
    Parker, J. C. 1973. Dog red blood cells: Adjustment of density in vivo. J. Gen. Physiol. 61:146.CrossRefGoogle Scholar
  122. 122.
    Parker, J. C., and J. F. Hoffman. 1967. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by cation transport in human red blood cells. J. Gen. Physiol. 50:893.PubMedCrossRefGoogle Scholar
  123. 123.
    Parker, J. C., and J. F. Hoffman. 1976. Influences of cell volume and adrenalectomy on cation flux in dog red blood cells. Biochim. Biophys. Acta 433:404.CrossRefGoogle Scholar
  124. 124.
    Parpart, A. K., and J. C. Schnell. 1935. Solvent water in the normal mammalian erythrocyte. J. Cell. Comp. Physiol. 6: 137.CrossRefGoogle Scholar
  125. 125.
    Perrone, J. F., and R. Blostein. 1973. Asymmetric interaction of inside-out and right-side out erythrocyte membrane vesicles with ouabain. Biochim. Biophys. Acta 291:680.PubMedCrossRefGoogle Scholar
  126. 126.
    Ponder, E. 1948. Volume changes in hemolytic systems containing resorcinol, taurocholate, and saponin. J. Gen. Physiol. 31:325.PubMedCrossRefGoogle Scholar
  127. 127.
    Ponder, E. 1948. Hemolysis and Related Phenomena. Grune & Stratton, New York.Google Scholar
  128. 128.
    Post, R. L., C. D. Albright, and K. Dayani. 1967. Resolution of pump and leak components of sodium and potassium ion transport in human erythrocytes. J. Gen. Physiol. 50:1201.PubMedCrossRefGoogle Scholar
  129. 129.
    Post, R. L., and P. C. Jolly. 1957. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25:118.PubMedCrossRefGoogle Scholar
  130. 130.
    Post, R. L., S. Kume, T. Tobin, B. Orcutt, and A. K. Sen. 1969. Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase. J. Gen. Physiol. 54:306s.CrossRefGoogle Scholar
  131. 131.
    Post, R. L., L. C. Merritt, C. R. Kinsolving, and C. D. Albright. 1960. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J. Biol. Chem. 235:1796.PubMedGoogle Scholar
  132. 132.
    Proverbio, F., and J. F. Hoffman. 1977. Membrane compartmentalized ATP and its preferential use by the Na, K-ATPase of human red cell ghosts. J. Gen. Physiol. 69:605.PubMedCrossRefGoogle Scholar
  133. 133.
    Rand, R. P., and A. L. Burton. 1964. Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. Biophys. J. 4:115.PubMedCrossRefGoogle Scholar
  134. 134.
    Rega, A. F., P. J. Garrahan, and M. I. Pouchan. 1970. Potassium– activated phosphatase from human red blood cells: The asymmetric effect of K +, Na+, Mg+ +, and adenosine triphosphate. J. Membr. Biol. 3:14.CrossRefGoogle Scholar
  135. 135.
    Robinson, J. D., E. S. Hall, and. B. Dunham. 1977. Reversal of the Na-K pump and apparent affinity for intracellular potassium. Nature (London) 269:165.CrossRefGoogle Scholar
  136. 136.
    Robinson, R. A., and R. H. Stokes. 1959. Electrolyte Solutions. Butterworths, London.Google Scholar
  137. 137.
    Roepke, R. R., and E. J. Baldes, 1942. A study of the osmotic properties of erythrocytes. J. Cell. Comp. Physiol. 20:71.CrossRefGoogle Scholar
  138. 138.
    Rosenberg, J. 1954. The concept and definition of active transport. Symp. Soc. Exp. Biol. 8:27.Google Scholar
  139. 139.
    Ryan, H. E., and J. F. Hoffman. 1960. In: Regulation of the Inorganic Ion Content of Cells. G. E. W. Wolstenholme and C.M. O’Connor, eds. Ciba Foundation Study Group No. 5.J.A. Churchill, London, p. 18.Google Scholar
  140. 140.
    Sachs, J. R. 1974. Interaction of external K, Na and cardioactive steroids with the Na-K pump of the human red blood cell. J. Gen. Physiol. 63:123.PubMedCrossRefGoogle Scholar
  141. 141.
    Sachs, J. R., J. C. Ellory, D. L. Kropp, P. B. Dunham, and J. F. Hoffman. 1974. Antibody-induced alterations in the kinetic characteristics of the Na:K pump in goat red blood cells. J. Gen. Physiol. 63:389.PubMedCrossRefGoogle Scholar
  142. 142.
    Sachs, J. R., and L. G. Welt. 1967. The concentration dependence of active potassium transport in the human red blood cell. J. Clin. Invest. 46:65.PubMedCrossRefGoogle Scholar
  143. 143.
    Schatzmann, H. J. 1953. Herzglykoside als Hemmstoffe fur den aktiven Kalium und Natrium-transport durch die Erythrocyten– membran.Helv. Physiol. Pharmacol. Acta 11:346.PubMedGoogle Scholar
  144. 144.
    Schrier, S. L., and L. S. Doak. 1963. Studies of the metabolism of human erythrocyte membranes. J. Clin. Invest. 42:756.PubMedCrossRefGoogle Scholar
  145. 145.
    Schwartz, A., H. Matsui, and A. H. Laughter. 1968. Tritiated digoxin binding to (Na + K)-activated adenosine triphosphatase: Possible allosteric site. Science 160:323.PubMedCrossRefGoogle Scholar
  146. 146.
    Sen, A. K., and R. L. Post. 1964. Stoichiometry and localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte. J. Biol Chem. 239:345.PubMedGoogle Scholar
  147. 147.
    Shaw, T. I. 1955. Potassium movements in washed erythrocytes. J. Physiol. CLondon ) 129:464.Google Scholar
  148. 148.
    Simons, T. J. B. 1975. The interaction of ATP-analogues possessing a blocked-phosphate group with the sodium pump in human red cells. J. Physiol. (London) 244:731.Google Scholar
  149. 149.
    Skou, J. C. 1957. Influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23:394.PubMedCrossRefGoogle Scholar
  150. 150.
    Skou, J. C., and J. G. Norby, eds. 1979. Na, K-ATPase. Academic Press, New York.Google Scholar
  151. 151.
    Slayman, C. L., ed. 1982. Electrogenic Ion Pumps. Curr. Top. Membr. Transp. 16.Google Scholar
  152. 152.
    Solomon, A. K., T. J. Gill, and. L. Gold. 1956. The kinetics of cardiac glycoside inhibition of potassium transport in human erythrocytes. J. Gen. Physiol. 40:327.PubMedCrossRefGoogle Scholar
  153. 153.
    Steck, T. L., R. S. Weinstein, J. H. Straus, and. F. H. Wallach. 1970. Inside-out red cell membrane vesicles: Preparation and purification. Science 168:255.PubMedCrossRefGoogle Scholar
  154. 154.
    Stein, W.D., W. R. Lieb, S.J. D. Karlish, and Y. Eilam. 1973. A model for the active transport of sodium and potassium as mediated by a tetrameric enzyme. Proc. Natl. Acad. Sci. USA 70:275.PubMedCrossRefGoogle Scholar
  155. 155.
    Steinbach, H. B. 1940. Sodium and potassium in frog muscle.J. Biol. Chem. 133:695.Google Scholar
  156. 156.
    Stoner, L. C., and F. M. Kregenow. 1976. Chloride fluxes and voltage measurements in single red blood cells. Biophys. J. 16:170a.Google Scholar
  157. 157.
    Thomas, R. C. 1972. Electrogenic sodium pump in nerve and muscle cells. Physiol. Rev. 52:563.PubMedGoogle Scholar
  158. 158.
    Tosteson, D. C. 1959. Halide transport in red blood cells. Acta Physiol. Scand. 46:19.CrossRefGoogle Scholar
  159. 159.
    Tosteson, D. C., R. B. Gunn, and J. O. Wieth. 1973. Chloride and hydroxyl ion conductance of sheep red cell membranes. In: Thrombocytes and Leucocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Williams, eds. Thieme, Stuttgart, p. 62.Google Scholar
  160. 160.
    Tosteson, D. C., and J. F. Hoffman. 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44:169.PubMedCrossRefGoogle Scholar
  161. 161.
    Van Slyke, D. D., H. Wu, and F. C. Mean. 1923. Factors controlling the electrolyte and water distribution in the blood. J. Biol. Chem. 56:765.Google Scholar
  162. 162.
    Warburg, E. 1922. Studies on carbonic acid compounds and hydrogen ion activities in blood and salt solutions. Biochem. J. 16:153.PubMedGoogle Scholar
  163. 163.
    White, B., and R. Blostein. 1982. Comparison of red cell and kidney (Na+K)-ATPase at 0°C. Biochim. Biophys. Acta 688:685.PubMedCrossRefGoogle Scholar
  164. 164.
    Whittam, R. 1962. The asymmetrical stimulation of a membrane adenosine triphosphate in relation to active cation transport.Biochem. J. 84:100.Google Scholar
  165. 165.
    Whittam, R., and M. E. Ager. 1964. Vectorial aspects of ade– nosinetriphosphatase activity in erythrocyte membranes.Biochem. J. 93:337.PubMedGoogle Scholar
  166. 166.
    Whittam, R., and M. E. Ager. 1965. The connexion between active cation transport and metabolism in erythrocytes.Biochem. J. 97:214.PubMedGoogle Scholar
  167. 167.
    Whittam, R., K. P. Wheeler, and A. Blaker. 1964. Oligomycin and active transport reactions in cell membranes. Nature (London) 203:720.CrossRefGoogle Scholar
  168. 168.
    Wilbrandt, W. 1941. Osmotische Natur Segenamatur nicht-os– motischer Hamolysen. (Kolloidosmotische Hamolyse). Pflugers Arch. Gesamte Physiol. Menschen Tiere 245:22.CrossRefGoogle Scholar
  169. 169.
    Williams, T. F., C. C. Fordham, W. Hollander, and L. G. Welt. 1959. Osmotic behavior of human red blood cells. J. Clin. Invest. 38:1587.PubMedCrossRefGoogle Scholar
  170. 170.
    Wieth, J. O., J. Funder, R. B. Gunn, and J. Brahm. 1974. Passive transport pathways for chloride and urea through the red cell membrane. In: Comparative Biochemistry and Physiology of Transport. L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds. North– Holland, Amsterdam, p. 317.Google Scholar
  171. 171.
    Wintrobe, M. M. 1933. Variations in the size and hemoglobin content of erythrocytes in the blood of various vertebrates. Folia Haematol. (Leipzig ) 51:32.Google Scholar
  172. 172.
    Yingst, D. R., 1985. Cytoplasmic protein associated with increased Ca inhibition of the Na, K-ATPase. Nature (London) in press.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Joseph F. Hoffman
    • 1
  1. 1.Department of PhysiologyYale University School of MedicineNew HavenUSA

Personalised recommendations