Mechanisms of Electron Transfer in Succinate Dehydrogenase and Fumarate Reductase: Possible Functions for Iron-Sulphur Centre 2 and Cytochrome b

  • Richard Cammack
  • John J. Maguire
  • Brian A. C. Ackrell

Abstract

Succinate dehydrogenase and fumarate reductase are membrane-bound enzymes of similar structure which catalyze electron transfer between the fumarate/succinate and quinone/quinol couples [1–3]. The involvement and location of covalently-bound flavin and three iron-sulphur clusters, [2Fe-2S] Centre 1, [4Fe-4S] Centre 2 and [3Fe-4S] Centre 3 [4], in the two dissociable subunits are indicated by the amino-acid sequences [5]. The flavin is attached to the largest subunit,~70kDa, and the iron-sulphur clusters to the other soluble protein, ~ 30kDa; these two subunits may be isolated as soluble succinate dehydrogenase or fumarate reductase.

Keywords

Cysteine NADH Succinate Quinone Phthalate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Ohnishi, Structure of the succinate-ubiquinone oxidoreductase (Complex II), in: “Current Topics in Bioenergetics” C.P. Lee, ed. Academic Press,New York (1987)Google Scholar
  2. 2.
    S.T. Cole, C. Condon, B.D. Lemire and J.H. Weiner, 1986, Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane bound iron-sulphur flavoenzyme of Escherichia coli., Biochim. Biophys. Acta, 135: 381.Google Scholar
  3. 3.
    L. Hederstedt and L. Rutberg, 1981, Succinate dehydrogenase - a comparative review, Microbiol. Rev., 45: 542.Google Scholar
  4. 4.
    M.K. Johnson, J.E. Morningstar, D.E. Bennett, B.A.C. Ackrell and E.B. Kearney, 1985, Magnetic circular dichroism studies of succinate dehydrogenase. Evidence for [2Fe-2S], [3Fe-xS], and [4Fe-4S] centres in reconstitutively active enzyme., J. Biol. Chem., 260: 7368.Google Scholar
  5. 5.
    M.G. Darlison and J.R. Guest, 1984, Nucleotide sequence encoding the iron-sulphur protein subunit of the succinate dehydrogenase of Escherichia coli, Biochem. J., 223: 507.Google Scholar
  6. 6.
    Y. Hatefi, 1985, The mitochondrial electron transport and oxidative phosphorylation system, J. Biol. Chem., 54: 1015.Google Scholar
  7. 7.
    H. Murakami, K. Kita, H. Oya and Y. Anraku, 1986, The E. coli cytochrome b556 gene, cybA, is assignable as sdhC in the succinate dehydrogenase gene cluster., FEMS Microbiol. Lett., 30: 307.Google Scholar
  8. 8.
    R. Cammack, Iron-sulfur clusters in enzymes: pathways of electron transfer, in: “Iron-sulfur Protein Research,” H. Matsubara, ed. Japan Scientific Societies Press/Spinger-Verlag,Tokyo and Berlin (1987)Google Scholar
  9. 9.
    J.J. Maguire, M.K. Johnson, J. Morningstar, B.A.C. Ackrell and E.B. Kearney, 1985, EPR studies of mammalian succinate dehydrogenase. Detection of the tetranuclear cluster S2., Biol. Chem., 260: 10909.Google Scholar
  10. 10.
    R. Cammack, D.S. Patil and J.H. Weiner, 1986, Evidence that centre 2 in Escherichia coli fumarate reductase is a [4Fe-4S] cluster, Biochim. Biophys. Acta, 870: 545.CrossRefGoogle Scholar
  11. 11.
    N.R. Orme-Johnson, R.E. Hansen and H. Beinert, 1971, EPR studies of the cytochrome b-c 1 segment of the mitochondrial electron transfer system, Biochem. Biophys. Res. Commun., 4 5: 871.CrossRefGoogle Scholar
  12. 12.
    L. Yu, J.X. Yu, P.E. Haley and C.A. Yu, 1987, Properties of bovine heart mitochondrial cytochrome 560, J. Biol. Chem., 262: 1137.Google Scholar
  13. 13.
    T. Ohnishi, J.C. Salerno, D.B. Winter, J. Lim, C. Yu, L. Yu and T.E. King, 1976, Thermodynamic and EPR characterization of two ferredoxin- type iron-sulfur centers in the succinate-ubiquinone reductase segment of the respiratory chain, J. Biol.. Chem., 251: 2094.Google Scholar
  14. 14.
    T. Ohnishi, J. Lim, D.B. Winter and T.E. King, 1976, Thermodynamic and EPR characteristics of a HiPIP-type iron-sulfur center in the succinate dehydrogenase of the respiratory chain, J. Biol. Chem., 251: 2 105.Google Scholar
  15. 15.
    R. Cammack and J.M. Palmer, 1977, Iron-sulphur centres in mitochondria from Arum maculatum spadix with very high rates of cyanide-resistant respiration, Biochem. J., 166: 347.Google Scholar
  16. 16.
    C. Condon, R. Cammack, D.S. Patil and P. Owen, 1985, The succinate dehydrogenase of Escherichia coli., J. Biol. Chem., 260: 9427.Google Scholar
  17. 17.
    B.A. Crowe, P. Owen, D.S. Patil and R. Cammack, 1983, Characterisation of succinate dehydrogenase from Micrococcus luteus (lysodeikticus) by electron-spin-resonance spectroscopy, Eur. J. Biochem., 137: 191.CrossRefGoogle Scholar
  18. 18.
    J.J. Maguire, K. Magnusson and L. Hederstedt, 1986, Bacillus subtilis mutant succinate dehydrogenase lacking covalently bound flavin: identification of the primary defect and studies on the iron-sulfur clusters in mutated and wild-type enzyme. Biochemistry, 25: 5202.CrossRefGoogle Scholar
  19. 19.
    D. Simpkin and W.J. Ingledew, 1985, The membrane-bound fumarate reductase of Escherichia coli: an electron-paramagnetic resonance study, Biochem. Soc. Trans. 13: 603.Google Scholar
  20. 20.
    G. Unden, S.P.J. Albracht and A. Kröger, 1984, Redox potentials and kinetic properties of fumarate reductase complex from Vibrio succinogenes., Biochim. Biophys. Acta, 767: 460.CrossRefGoogle Scholar
  21. 21.
    R. Cammack, Midpoint potentials of iron-sulphur proteins - a survey., in: “Charge and field effects in biosysterns.M.J. Allen and P.N.R. Usherwood”, ed. Abacus Press,Tunbridge Wells (1984)Google Scholar
  22. 22.
    J.F. Cline, B.M. Hoffman, W.B. Mims, E. LaHaie, D.P. Ballou and J.A. Fee, 1985, Evidence for N coordination to Fe in the (2Fe-2S) clusters of Thermus Rieske protein and phthalate dioxygenase from Pseudomonas., J. Biol. Chem., 260: 3251.Google Scholar
  23. 23.
    R. LoBrutto, P.E. Haley, C.A. Yu, T. Ohnishi and J.S. Leigh, 1986, Biophys. J., 49: 327a.Google Scholar
  24. 24.
    D.S. Bendall and R. Hill, 1956, Cytochrome components in the spadix of Arum maculatum. New Phytol., 55: 206.CrossRefGoogle Scholar
  25. 25.
    A.G. Porras and G. Palmer, 1982, The room temperature potentiometry of xanthine oxidase, J. Biol. Chem., 257: 1 1617.Google Scholar
  26. 26.
    J.S. Olson, D.P. Ballou, G. Palmer and V. Massey, 1974, The mechanism of action of xanthine oxidase, J. Biol. Chem., 249: 4363.Google Scholar
  27. 27.
    H. Santos, J.J.G. Moura, I. Moura, J. LeGall and A.V. Xavier, 1984, NMR studies of electron transfer mechanisms in a protein with interacting redox centres: Desulfovibrio gigas cytochrome c-3, Eur. J. Biochem., 141: 283.CrossRefGoogle Scholar
  28. 28.
    T. Ohnishi, T.E. King, J.C. Salerno, H. Blum, J.R. Bowyer and T. Maida, 1981, Thermodynamic and electron paramagnetic resonance characterization of flavin in succinate dehydrogenase, J. Biol. Chem., 256: 5577.Google Scholar
  29. 29.
    P.R. Rich, 1984, Electron and proton transfers through quinones and cytochrome complexes, Biochim. Biophys. Acta, 768: 53.Google Scholar
  30. 30.
    R. Cammack, B.A. Crowe and N.D. Cook, 1986, Dual-pathway models of electron transfer in succinate dehydrogenase and fumarate reductase, Biochem. Soc. Trans., 14: 1207.Google Scholar
  31. 31.
    B.A.C. Ackrell, E.B. Kearney, C.J. Coles, T.P. Singer, H. Beinert, Y.P. Wan and K. Folkers, 1977, Kinetics of the reoxidation of succinate dehydrogenase. Arch. Biochem. Biophys., 182: 107.CrossRefGoogle Scholar
  32. 32.
    F.J. Ruzicka, H. Beinert, K.L. Schepler, W.R. Dunham and R.H. Sands, 1975, Interaction of ubisemiquinone with a paramagnetic component in heart tissue, Proc. Nat. Acad. Sci. USA, 72: 2886.CrossRefGoogle Scholar
  33. 33.
    R.P. Carithers, D.C. Yoch and D.I. Arnon, 1977, Isolation and characterization of bound iron-sulfur proteins from bacterial photosynthetic membranes. II. Succinate dehydrogenase from Rhodospirillum rubrum chromatophores. J. Biol. Chem., 252: 7461.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Richard Cammack
    • 1
  • John J. Maguire
    • 2
  • Brian A. C. Ackrell
    • 3
  1. 1.Department of BiochemistryKing’s CollegeLondonUK
  2. 2.Membrane Bioenergetics GroupLawrence Berkeley LaboratoryBerkeleyUSA
  3. 3.Department of Biochemistry and BiophysicsVeterans Administration Medical CenterSan FranciscoUSA

Personalised recommendations