Advertisement

Organization and Expression of Nuclear Genes for Yeast Cytochrome c Oxidase

  • Richard M. Wright
  • John D. Trawick
  • Cynthia E. Trueblood
  • Thomas E. Patterson
  • Robert O. Poyton

Abstract

In eukaryotes the assembly and function of holocytochrome c oxidase requires the protein products of both nuclear and mitochondrial genes 1. Some of these genes provide protein subunits of the holoenzyme itself while others are required specifically for the biosynthesis or assembly of these subunits into a functional oligomer2. In the budding yeast Saccharomyces cerevisiae. three mitochondrial genes (COX1, COX2, and COX3) and six nuclear genes (COX4, COX5a, or COX5b, COX6, COX7, COX8, and COX9) encode the subunit polypeptides of the complex. COX5a and COX5b encode interchangeable isologs of subunit V, designated Va and Vb 3-5. All other subunits are specified by unique genes present in single copy on their respective genomes. Considering that nine structural genes in two different cellular compartments specify the subunit polypeptides of cytochrome c oxidase, the synthesis and assembly of the holoenzyme poses many interesting questions. Is the expression of this set of genes coordinated? If so, at what level (transcription, transcript processing, translation, or assembly) is their expression regulated? What is the nature of the intracellular effectors (metabolites, trans-acting proteins, etc.) that serve to modulate the level of each subunit and determine the overall level of holocytochrome c oxidase activity in cells? Are COX5a and COX5b expressed differentially and if so, do their protein products, Va and Vb, confer different properties on the holoenzyme?

Keywords

Nuclear Gene Complementation Group Glucose Repression COX6 Promoter Transcript Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. O. Poyton, G. Bellus, and A. C. Kerner, in: “Membranes and Transport,” A. Martonosi, ed., Vol.1, pp.237–247, Plenum Publishing Corp., N.Y. (1982).Google Scholar
  2. 2.
    J. E. McEwen, C. Ko, B. Kloeckener-Gruissem, and R. O. Poyton, J. Biol. Chem. 261: 11872–11879 (1986).Google Scholar
  3. 3.
    J. E. McEwen, M. G. Cumsky, C. Ko, S. D. Power, and R. O. Poyton, J. Cell Biochem. 24: 229–242 (1984).CrossRefGoogle Scholar
  4. 4.
    M. G. Cumsky, C. Ko, C. E. Trueblood, and R. O. Poyton, Proc. Natl. Acad. Sci. U.S.A. 82: 2235–2239 (1985).CrossRefGoogle Scholar
  5. 5.
    M. G. Cumsky, C. E. Trueblood, C. Ko, and R. O. Poyton, Mol. Cell. Biol., submitted (1987).Google Scholar
  6. 6.
    C. E. Trueblood and R. O. Poyton, Mol. Cell. Biol., submitted (1987).Google Scholar
  7. 7.
    J. E. McEwen, V. C. Cameron, and R. O. Poyton, J. Bacteriol. 161: 831–835 (1985).Google Scholar
  8. 8.
    B. Kloeckener-Gruissem, J. E. McEwen, and R. O. Poyton, Current Genetics, in press (1987).Google Scholar
  9. 9.
    R. M. Wright, C. Ko, M. G. Cumsky, and R. O. Poyton, J. Biol. Chem. 259: 15401–15407 (1984).Google Scholar
  10. 10.
    R. M. Wright, L. K. Dircks, and R. O. Poyton, J. Biol. Chem. 261: 17183–17191 (1986).Google Scholar
  11. 11.
    T. E. Patterson and R. O. Poyton, J. Biol. Chem. 261: 17192–17197 (1986).Google Scholar
  12. 12.
    A. Tzagoloff and A. M. Myers, Ann. Rev. Biochem. 55: 248–285 (1986).CrossRefGoogle Scholar
  13. 13.
    G. F. Carle and M. V. Olson, Proc. Natl. Acad. Sci. U.S.A. 82: 3756–3760 (1985).CrossRefGoogle Scholar
  14. 14.
    J. C. Schneider and L. Guarente, Nucleic Acids Res. 15, in press (1987).Google Scholar
  15. 15.
    E. Skekely and D. L. Montgomery, Mol. Cell. Biol. 4: 939–946 (1984).Google Scholar
  16. 16.
    J. Verdiere and E. Petrochilo, Mol. Gen. Genet. 175: 209 - 216 1979 ).CrossRefGoogle Scholar
  17. 17.
    E. Trueblood and R. O. Poyton, in preparation.Google Scholar
  18. 18.
    G. Cumsky, unpublished observations.Google Scholar
  19. 19.
    K. Struhl, in: “From Gene To Protein: Steps Dictating The Maximal Level Of Gene Expression,” W. Reznikoff and L. Gold, eds., pp. 35–78, Butterworths Publ. Co., Boston (1986).Google Scholar
  20. 20.
    K. Struhl, Mol. Cell. Biol. 6: 3847–3853 (1986).Google Scholar
  21. 21.
    J. E. Ogden, C. Stanway, Kim Sunyoung, J. Mellor, A. J. Kingsman, and M. Kingsman, Mol. Cell. Biol. 6: 4335–4343 (1986).Google Scholar
  22. 22.
    E. McEwen, unpublished.Google Scholar
  23. 23.
    R. M. Wright and R. O. Poyton, in preparation.Google Scholar
  24. 24.
    T. E. Patterson and R. O. Poyton, in preparation.Google Scholar
  25. 25.
    E. Ebner, T. L. Mason, and G. Schatz, J. Biol. Chem. 248: 5369–5378 (1973).Google Scholar
  26. 26.
    B. Kloeckener-Gruissem, Ph.D. Dissertation, University of Colorado (1985).Google Scholar
  27. 27.
    B. Kloeckener-Gruissem, J. E. McEwen, and R. O. Poyton, Embo. J., submitted (1987).Google Scholar
  28. 28.
    M. C. Costanzo, E. C. Seaver, and T. D. Fox, EMBO. J. 5: 3637 - 3641 (1986).Google Scholar
  29. 29.
    C. G. Poutre and T. D. Fox, Genetics 115: 637–647 (1987).Google Scholar
  30. 30.
    K. Pfeifer, T. Prezant and L. Guarente, Cell 49: 19–27 (1987).CrossRefGoogle Scholar
  31. 31.
    W. Dowhan, C. R. Bibus, and G. Schatz, EMBO J. 4: 129–184 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Richard M. Wright
    • 1
  • John D. Trawick
    • 1
  • Cynthia E. Trueblood
    • 1
  • Thomas E. Patterson
    • 1
  • Robert O. Poyton
    • 1
  1. 1.Department of Molecular, Cellular, and Developmental BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations