Effects of Freezing on the Coordination State and Ligand Orientation in Hemoproteins

  • Helen Anni
  • Takashi Yonetani


Some spectroscopic and kinetic measurements of hemoproteins have been carried out in cryogenic temperatures in order to achieve a number of specific objectives such as trapping transient intermediates, retarding decay processes and electron/nuclear relaxation rates, controlling reaction rates, expanding a range of temperature, increasing signal-to-noise ratios of spectroscopic data, etc. It is generally assumed in these measurements that freezing would not adversely alter the sites and properties of interest. The absence of obvious changes in the frozen sample after thawing is sometimes taken as a proof that freezing has not irreversibly modified the protein. However, this does not exclude the possibility that a hemoprotein may be reversibly altered in frozen states due to the physical stress exerted by crystallized solvent water molecules. In addition, it is well known that pH and other physical properties of aqueous solutions could be significantly changed upon freezing1.


Cryogenic Temperature Heme Iron Spin Transition Solvent Water Molecule Ligand Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Douzou, P (1977) Cryobiochemistry, Academic Press, New York.Google Scholar
  2. 2.
    Iizuka, T. and Kotani, M. (1969) Biochim. Biophys. Acta 194, 351–363.Google Scholar
  3. 3.
    Yonetani, T. and Schleyer, H. (1967) J. Biol. Chem.Google Scholar
  4. 4.
    Hori, H., Ikeda-Saito, M. and Yonetani, T. (1981) J. Biol. Chem. 256, 7849–7855.Google Scholar
  5. 5.
    Hori, H., Ikeda-Saito, M., and Yonetani, T. (1980) Natur 288, 501–502.CrossRefGoogle Scholar
  6. 6.
    Hori, H., Ikeda-Saito, M., and Yonetani, T. (1982) J. Biol. Chem. 257, 3636–3642.Google Scholar
  7. 7.
    Morse, R. H and Chan, S. I. (1980) J. Biol. Chem. 225, 7876–7882.Google Scholar
  8. 8.
    Tamura, M. (1979) Biochim. Biophys. Acta 243, 249–258.Google Scholar
  9. 9.
    Iizuka, T., Kotani, M., and Yonetani, T. (1968) Biochim. Biophys. Acta 167, 257–267.Google Scholar
  10. 10.
    Blum, H., Chance, B., and Litchfield, W. J. (1978) Biochim. Biophys. Acta 534, 317–321.Google Scholar
  11. 11.
    Schulz, C. E., Rutter, R., Sage, J. T., Debrunner, P. G., and Hager, L. P. (1984) Biochemistry 23, 4743–4754.CrossRefGoogle Scholar
  12. 12.
    Manthey, J. A., Boldt, N. J., Bocian, D. F., and Chan, S. I. (1986) J. Biol. Chem. 261, 6734–6741.Google Scholar
  13. 13.
    Yonetani, T. and Ray, G. S. (1965) J. Biol. Chem. 240, 4503–4508.Google Scholar
  14. 14.
    Yonetani, T., Chance, B., andKajiwara, S. (1966) J. Biol. Chem. 241, 2981–2982.Google Scholar
  15. 15.
    Kendrew, J. C. and Parish, R. G. (1956) Proc. Roy. Soc. London A. 238, 305–324.Google Scholar
  16. 16.
    Yonetani, T. Yamamoto, H., Erman, J. E., Leigh, J. S., Jr., and Reed, G. H. (1972) J. Biol. Chem. 247, 2447–2455.Google Scholar
  17. 17.
    Yonetani, T., Wilson, D. F., and Seamonds, B. (1966) J. Biol. Chem. 241, 5347–5352.Google Scholar
  18. 18.
    Finzel, B. C., Poulos, T. L., and Kraut, J. (1984) J. Biol. Chem. 259, 13027–13036.Google Scholar
  19. 19.
    Maltempo, M. M., and Moss, T. H. (1976) Quart. Rev. Biophys. 9, 181–215CrossRefGoogle Scholar
  20. 20.
    Yonetani, T. and Anni, H. (1987) J. Biol. Chem., submitted.Google Scholar
  21. 21.
    Deatherage, J. F. and Moffat, K. (1979) J. Mol. Biol. 134, 401–417.CrossRefGoogle Scholar
  22. 22.
    Yoshimura, T., Ozaki, T., Shintani, Y., and Watanabe, H. (1979) Arch. Biochem. Biophys. 193, 301–313.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Helen Anni
    • 1
  • Takashi Yonetani
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations